علم الكيمياء
تاريخ الكيمياء والعلماء المشاهير
التحاضير والتجارب الكيميائية
المخاطر والوقاية في الكيمياء
اخرى
مقالات متنوعة في علم الكيمياء
كيمياء عامة
الكيمياء التحليلية
مواضيع عامة في الكيمياء التحليلية
التحليل النوعي والكمي
التحليل الآلي (الطيفي)
طرق الفصل والتنقية
الكيمياء الحياتية
مواضيع عامة في الكيمياء الحياتية
الكاربوهيدرات
الاحماض الامينية والبروتينات
الانزيمات
الدهون
الاحماض النووية
الفيتامينات والمرافقات الانزيمية
الهرمونات
الكيمياء العضوية
مواضيع عامة في الكيمياء العضوية
الهايدروكاربونات
المركبات الوسطية وميكانيكيات التفاعلات العضوية
التشخيص العضوي
تجارب وتفاعلات في الكيمياء العضوية
الكيمياء الفيزيائية
مواضيع عامة في الكيمياء الفيزيائية
الكيمياء الحرارية
حركية التفاعلات الكيميائية
الكيمياء الكهربائية
الكيمياء اللاعضوية
مواضيع عامة في الكيمياء اللاعضوية
الجدول الدوري وخواص العناصر
نظريات التآصر الكيميائي
كيمياء العناصر الانتقالية ومركباتها المعقدة
مواضيع اخرى في الكيمياء
كيمياء النانو
الكيمياء السريرية
الكيمياء الطبية والدوائية
كيمياء الاغذية والنواتج الطبيعية
الكيمياء الجنائية
الكيمياء الصناعية
البترو كيمياويات
الكيمياء الخضراء
كيمياء البيئة
كيمياء البوليمرات
مواضيع عامة في الكيمياء الصناعية
الكيمياء الاشعاعية والنووية
Identifying compounds from nature
المؤلف:
Jonathan Clayden , Nick Greeves , Stuart Warren
المصدر:
ORGANIC CHEMISTRY
الجزء والصفحة:
ص421-422
2025-06-01
59
The next molecules we need to know how to identify are those discovered from nature— natural products. These often have biological activity and many useful medicines have been discovered this way. We shall look at a few examples from different fields. The first is the sex pheromone of the Trinidad butterfly Lycorea ceres. The male butterflies start courtship by emitting a tiny quantity of a volatile compound. Identifi cation of this type of compound is very difficult because of the minute amounts available but this compound was crystallized and gave enough for a mass spectrum and an IR. The highest peak in the mass spectrum was at 135. This is an odd number so we might have one nitrogen atom and a possible composition of C8H9ON. The IR showed a carbonyl peak at 1680 cm−1. With only this meagre information, the first proposals were for a pyridine aldehyde. Eventually a little more compound (6 mg!) was available and a proton NMR spectrum was run. This showed at once that this structure was wrong. There was no aldehyde proton and only one methyl group. More positive information was the pair of triplets showing a –CH2CH2– unit between two electron-withdrawing groups (N and C=O?) and the pair of doublets for neighbouring protons on an aromatic ring, although the chemical shift and the coupling constant are both rather small for a benzene ring. If we look at what we have got so far, we see that we have accounted for four carbon atoms in the methyl and carbonyl groups and the –CH2CH2– unit. This leaves only four carbon atoms for the aromatic ring. We must use nitrogen too as the only possibility is a pyrrole ring. Our fragments are now those shown below (the black dotted lines show joins to another fragment). These account for all the atoms in the molecule and suggest structures such as these.
Now we need to use the known chemical shifts and coupling constants for these sorts of molecules. An N–Me group would normally have a larger chemical shift than 2.2 ppm so we prefer the methyl group on a carbon atom of the pyrrole ring. Typical shifts and coupling constants around pyrroles are shown below. Chemists do not, of course, remember these numbers; we look them up in tables. Our data, with chemical shifts of 6.09 and 6.69 ppm and a coupling constant of 2.5 Hz, clearly favour hydrogen atoms in the 2 and 3 positions, and suggest this structure for the sex pheromone, which was confirmed by synthesis and is now accepted as correct.