1

المرجع الالكتروني للمعلوماتية

النبات

مواضيع عامة في علم النبات

الجذور - السيقان - الأوراق

النباتات الوعائية واللاوعائية

البذور (مغطاة البذور - عاريات البذور)

الطحالب

النباتات الطبية

الحيوان

مواضيع عامة في علم الحيوان

علم التشريح

التنوع الإحيائي

البايلوجيا الخلوية

الأحياء المجهرية

البكتيريا

الفطريات

الطفيليات

الفايروسات

علم الأمراض

الاورام

الامراض الوراثية

الامراض المناعية

الامراض المدارية

اضطرابات الدورة الدموية

مواضيع عامة في علم الامراض

الحشرات

التقانة الإحيائية

مواضيع عامة في التقانة الإحيائية

التقنية الحيوية المكروبية

التقنية الحيوية والميكروبات

الفعاليات الحيوية

وراثة الاحياء المجهرية

تصنيف الاحياء المجهرية

الاحياء المجهرية في الطبيعة

أيض الاجهاد

التقنية الحيوية والبيئة

التقنية الحيوية والطب

التقنية الحيوية والزراعة

التقنية الحيوية والصناعة

التقنية الحيوية والطاقة

البحار والطحالب الصغيرة

عزل البروتين

هندسة الجينات

التقنية الحياتية النانوية

مفاهيم التقنية الحيوية النانوية

التراكيب النانوية والمجاهر المستخدمة في رؤيتها

تصنيع وتخليق المواد النانوية

تطبيقات التقنية النانوية والحيوية النانوية

الرقائق والمتحسسات الحيوية

المصفوفات المجهرية وحاسوب الدنا

اللقاحات

البيئة والتلوث

علم الأجنة

اعضاء التكاثر وتشكل الاعراس

الاخصاب

التشطر

العصيبة وتشكل الجسيدات

تشكل اللواحق الجنينية

تكون المعيدة وظهور الطبقات الجنينية

مقدمة لعلم الاجنة

الأحياء الجزيئي

مواضيع عامة في الاحياء الجزيئي

علم وظائف الأعضاء

الغدد

مواضيع عامة في الغدد

الغدد الصم و هرموناتها

الجسم تحت السريري

الغدة النخامية

الغدة الكظرية

الغدة التناسلية

الغدة الدرقية والجار الدرقية

الغدة البنكرياسية

الغدة الصنوبرية

مواضيع عامة في علم وظائف الاعضاء

الخلية الحيوانية

الجهاز العصبي

أعضاء الحس

الجهاز العضلي

السوائل الجسمية

الجهاز الدوري والليمف

الجهاز التنفسي

الجهاز الهضمي

الجهاز البولي

المضادات الحيوية

مواضيع عامة في المضادات الحيوية

مضادات البكتيريا

مضادات الفطريات

مضادات الطفيليات

مضادات الفايروسات

علم الخلية

الوراثة

الأحياء العامة

المناعة

التحليلات المرضية

الكيمياء الحيوية

مواضيع متنوعة أخرى

الانزيمات

علم الاحياء : الأحياء الجزيئي : مواضيع عامة في الاحياء الجزيئي :

Polymerase Elongation Rate

المؤلف:  Robert Schleif

المصدر:  Genetics and Molecular Biology

الجزء والصفحة:  2nd Edition , p119-121

2025-04-17

204

Even more than in DNA synthesis, it is sensible for cells to regulate RNA synthesis at the initiation steps so that the elaborate machinery involved in independently regulating thousands of genes need not be built into the basic RNA synthesis module. Once RNA synthesis has been initiated, it proceeds at the same average rate on most, independent of growth conditions. Can this be demonstrated? Another need for knowing the RNA elongation rate is in the interpretation of physiological experiments. How soon after the addition of an inducer can a newly synthesized mRNA molecule appear?

RNA elongation rate measurements are not too hard to perform in vitro, but they are appreciably more difficult to perform on growing cells. Here we shall explain one method that has been used to determine the in vivo RNA elongation rate in Escherichia coli.

The measurement used rifamycin, an antibiotic that inhibits RNA polymerase only at the initiation step. It has no effect on RNA polymerase molecules engaged in elongation. Rifamycin and radioactive uridine were simultaneously added to bacteria; thus only those RNA chains that were in the process of elongation at the time of the additions were radioactively labeled, and no new ones could be initiated (Fig. 1). At various times after the rifamycin and uridine addition, samples were taken from the culture and their RNA was separated according to size by electrophoresis on polyacrylamide gels. Suppose that a specific species of RNA molecule is well separated from all other species by the electrophoresis. Then, the radioactivity in this size class will increase with time for as long as RNA polymerase molecules transcribe the corresponding gene, but once the last polymerase molecule to initiate has crossed the region, there can be no additional increase in radioactivity. The interval between the addition of rifamycin and the end of the period over which radioactivity increases is the time required for an RNA polymerase molecule to transcribe from the promoter to the end of the transcribed region.

Fig1. Effects of rifamycin addition on transcription of a large operon. Upon the addition of rifamycin, no more RNA polymerase molecules may initiate transcription. Those polymerase molecules that were transcribing continue to the end of the operon. Finally, the polymerase molecule that had initiated transcription just before the addition of rifamycin completes transcription of the operon.

The ribosomal RNA gene complexes were a convenient system for these measurements. Each of these seven nearly identical gene complexes consists of two closely spaced promoters, a gene for the 16S ribosomal RNA, a spacer region, a tRNA gene, the gene for the 23S ribosomal RNA, and the gene for the 5S ribosomal RNA (Fig. 2). The total length of this transcriptional unit is about 5,000 nucleotides. The 16S RNA, spacer tRNA, 23S RNA, and 5S RNA are all generated by cleavage from the growing polynucleotide chain.

FIG2. Structure of the ribosomal RNA operon used to determine the RNA elongation rate in E. coli.

The interval between the time of rifamycin addition and the time at which the last RNA polymerase molecule transcribes across the end of the 5S gene is the time required for RNA polymerase to transcribe the 5,000 bases from the promoter to the end of the ribosomal gene com plex. This time is found from the radioactive uridine incorporation measurements. Transcription across the 5S gene ends when the radio activity in 5S RNA stops increasing. This happens about 90 seconds after rifamycin and uridine addition (Fig. 3). This yields an elongation rate of about 60 nucleotides per second. This type of elongation rate measurement has been performed on cells growing at many different growth rates, and as expected, the results show that the RNA chain growth rate is independent of the growth rate of cells at a given temperature.

Fig3. Radioactivity incorporation kinetics into 5S RNA following the simultaneous addition of radioactive uridine and rifamycin.

EN

تصفح الموقع بالشكل العمودي