النبات
مواضيع عامة في علم النبات
الجذور - السيقان - الأوراق
النباتات الوعائية واللاوعائية
البذور (مغطاة البذور - عاريات البذور)
الطحالب
النباتات الطبية
الحيوان
مواضيع عامة في علم الحيوان
علم التشريح
التنوع الإحيائي
البايلوجيا الخلوية
الأحياء المجهرية
البكتيريا
الفطريات
الطفيليات
الفايروسات
علم الأمراض
الاورام
الامراض الوراثية
الامراض المناعية
الامراض المدارية
اضطرابات الدورة الدموية
مواضيع عامة في علم الامراض
الحشرات
التقانة الإحيائية
مواضيع عامة في التقانة الإحيائية
التقنية الحيوية المكروبية
التقنية الحيوية والميكروبات
الفعاليات الحيوية
وراثة الاحياء المجهرية
تصنيف الاحياء المجهرية
الاحياء المجهرية في الطبيعة
أيض الاجهاد
التقنية الحيوية والبيئة
التقنية الحيوية والطب
التقنية الحيوية والزراعة
التقنية الحيوية والصناعة
التقنية الحيوية والطاقة
البحار والطحالب الصغيرة
عزل البروتين
هندسة الجينات
التقنية الحياتية النانوية
مفاهيم التقنية الحيوية النانوية
التراكيب النانوية والمجاهر المستخدمة في رؤيتها
تصنيع وتخليق المواد النانوية
تطبيقات التقنية النانوية والحيوية النانوية
الرقائق والمتحسسات الحيوية
المصفوفات المجهرية وحاسوب الدنا
اللقاحات
البيئة والتلوث
علم الأجنة
اعضاء التكاثر وتشكل الاعراس
الاخصاب
التشطر
العصيبة وتشكل الجسيدات
تشكل اللواحق الجنينية
تكون المعيدة وظهور الطبقات الجنينية
مقدمة لعلم الاجنة
الأحياء الجزيئي
مواضيع عامة في الاحياء الجزيئي
علم وظائف الأعضاء
الغدد
مواضيع عامة في الغدد
الغدد الصم و هرموناتها
الجسم تحت السريري
الغدة النخامية
الغدة الكظرية
الغدة التناسلية
الغدة الدرقية والجار الدرقية
الغدة البنكرياسية
الغدة الصنوبرية
مواضيع عامة في علم وظائف الاعضاء
الخلية الحيوانية
الجهاز العصبي
أعضاء الحس
الجهاز العضلي
السوائل الجسمية
الجهاز الدوري والليمف
الجهاز التنفسي
الجهاز الهضمي
الجهاز البولي
المضادات الحيوية
مواضيع عامة في المضادات الحيوية
مضادات البكتيريا
مضادات الفطريات
مضادات الطفيليات
مضادات الفايروسات
علم الخلية
الوراثة
الأحياء العامة
المناعة
التحليلات المرضية
الكيمياء الحيوية
مواضيع متنوعة أخرى
الانزيمات
Reverse vaccinology (RV) and other applications
المؤلف:
Rebecca Ashfield, Angus Nnamdi Oli, Charles Esimone, Linda Anagu
المصدر:
Vaccinology and Methods in Vaccine Research
الجزء والصفحة:
P44-47
2025-02-12
121
Following the publishing of the H. influenzae genome in 1995, researchers commenced using genomic information to computationally enhance vaccine discovery. In 2000 Rino Rappuoli and his team produced a vaccine against Serogroup B meningococcus, thus championing the birth of RV (Hietalahti & Meri, 2015; Rappuoli, 2001). Subsequently, the technology was used to design vaccines against Group A Streptococcus, Group B Streptococcus, Staphylococcus aureus, and S. pneumoniae (Delany et al., 2013; Seib et al., 2012). RV is an important aspect of immunoinformatics and in contrast to classical vaccinology it provides speed, accuracy, and efficiency.
RV provides a more comprehensive approach to vaccine development because it reveals all possible epitopes (B, CD41, and CD81 T cell) in a pathogen, increasing by orders of magnitude potential vaccine targets (Delany et al., 2013; Seib et al., 2012). An initial limitation of RV was that antigens could not be assessed based on their ability to generate antibodies, although advances in structural biology and B cell technologies show some hope in surmounting this challenge (Liljeroos et al., 2015; Van Regenmortel, 2016). One disadvantage of RV is that currently, it can only identify protein antigens but not polysaccharide antigens (Rappuoli & Aderem, 2011).
Following identification of potential candidate antigens by RV, these can be ranked as vaccine candidates using a variety of approaches:
1. Assess antigen variability between pathogen strains, and select the least variable antigens/epitopes (Bidmos et al., 2018).
2. Assess immunogenicity by expressing antigens as soluble proteins using, for example, DNA encoded in viral vectors and injecting into mice, rats, or rabbits (Zheng et al., 2012).
3. Assess the ability of antibodies from immunized animals to protect against infection in in vitro infectivity assays (Straub et al., 2007).
4. Assess the ability of candidate antigens to protect against disease in animal challenge models (Mun˜oz-Fontela et al., 2020).
With the advent of RV, there is a greater research focus on pathogen anti gens which could be developed as subunit vaccines. RV has led to the discovery of pili in Gram-positive bacteria such as pneumococcus and streptococcus, and also meningococcal factor G binding protein which binds to complement factor H in humans (Moballegh Naseri et al., 2020; Seib et al., 2012). Optimal target antigens for vaccines are both necessary for microbial pathogenesis, and highly immunogenic. RV was helpful in the speedy design of various SARS-CoV-2 vaccines, and this approach holds great promise for future global public health challenges (Moxon et al., 2019; Reche et al., 2002).
Sequencing peptide epitopes presented by MHC molecules using mass spectrometry has enabled the design of T-cell inducing vaccines (Backert & Kohlbacher, 2015; Pimenova et al., 2008).
Today, the development of novel vaccines has been made possible through the molecular and mechanistic understanding of the immune system. Data provided by the sequencing of the B cell Receptor repertoire, high-throughput discovery of protective human antibodies, and structural description of the distinctive nature or features of protective antigens and epitopes have contributed to rational vaccine design, for example by identifying epitopes that are recognized by strongly neutralizing antibodies capable of conferring protection against specific pathogens (Rappuoli et al., 2016).
Immunoinformatic data obtained from sequencing a genome, the protein coding regions of genes in the genome (whole-exome sequencing) and RNA expressed from the genome have made it possible to understand a patient’s set of human leukocyte antigen (HLA) alleles. Combined with data from accurate sequencing of peptide epitopes by mass spectrometry, such information enables the design of personalized prophylactic and therapeutic vac cines, and cancer immunotherapies (Backert & Kohlbacher, 2015)(Pimenova et al., 2008). With the advent of next-generation sequencing, it is possible to determine with high accuracy the presence and quantity of mRNA transcripts in an individual’s cells, including splice variants and other modifications, and to follow changes in the RNA profile over time.
Personalized cancer vaccines, or neoantigen cancer vaccines (NCV) have been developed for use in for cancer immunotherapy. Neoantigens are important immunogens and are not found in normal cells, as they are created by tumor-specific mutations and are thus potentially seen as foreign by the immune system. They can activate CD41 and CTLs or CD81 to induce immunological responses. Immunoinformatic tools can identify these neoantigens as new tumor immunotherapy targets using a combination of different algorithms that can identify and predict the affinity of neoantigen peptides to MHCs. Examples of NCV “include nucleic acid, dendritic cell (DC)-based, tumor cell, and synthetic long peptide (SLP) vaccines” (Peng et al., 2019).
Vaccination has been serving as an indispensable tool in the fight against infectious diseases and cancer. Microbial proteins vital to pathogenesis have been mined through bioinformatics tools. Most important to the immunoinformatician are those conserved proteins that are both necessary for microbial pathogenesis, and that are highly immunogenic. The CadF protein of C. jejuni is a good example of a protein identified through a data mining approach: Moballegh Naseri et al. (2020) were able to prove that CadF is conserved, and thus could serve as a good vaccine target against C. jejuni.
References
--------------
Backert, L., & Kohlbacher, O. (2015). Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Medicine., 7, 119. Available from https://doi.org/10.1186/ s13073-015-0245-0. Available from 26589500, PMCID: PMC4654883.
Bidmos, F. A., Siris, S., Gladstone, C. A., & Langford, P. R. (2018). Bacterial vaccine antigen discovery in the reverse vaccinology 2.0 era: Progress and challenges. Frontiers in Immunology, 9, 2315. Available from https://doi.org/10.3389/fimmu.2018.02315. Available from 30349542, PMCID: PMC6187972.
Delany, I., Rappuoli, R., & Seib, K. L. (2013). Vaccines, reverse vaccinology, and bacterial pathogenesis. Cold Spring Harbor Perspectives in Medicine., 3(5), a012476. Available from https://doi.org/10.1101/cshperspect.a012476. Available PMC3633180. from 23637311, PMCID:
Hietalahti, J., & Meri, S. (2015). Uudet rokotteet B-ryhma ¨n meningokokkia vastaan [New vaccines against group B meningococcal diseases]. Duodecim; Laaketieteellinen Aikakauskirja, 131(6), 525 532, Finnish. Available from 26237895.
Liljeroos, L., Malito, E., Ferlenghi, I., & Bottomley, M. J. (2015). Structural and computational biology in the design of immunogenic vaccine antigens. Journal of Immunology Research., 2015, 156241. Available from https://doi.org/10.1155/2015/156241, Epub 2015 Oct 7. Available from 26526043.
Moballegh Naseri, M., Shams, S., Moballegh Naseri, M., & Bakhshi, B. (2020). In silico analysis of epitope-based CadF vaccine design against Campylobacter jejuni. BMC Research Notes., 13(1), 518. Available from https://doi.org/10.1186/s13104-020-05364-z. Available from 33168057, PMCID: PMC7652678.
Moxon, R., Reche, P. A., & Rappuoli, R. (2019). Editorial: Reverse vaccinology. Frontiers in Immunology, 10, 2776. Available from https://doi.org/10.3389/fimmu.2019.02776. Available from 31849959, PMCID: PMC6901788.
Mun ˜oz-Fontela, C., Dowling, W. E., Funnell, S. G. P., Gsell, P. S., Riveros-Balta, A. X., Albrecht, R. A., Andersen, H., Baric, R. S., Carroll, M. W., Cavaleri, M., Qin, C., Crozier, I., Dallmeier, K., de Waal, L., de Wit, E., Delang, L., Dohm, E., Duprex, W. P., Falzarano, D., ...Barouch, D. H. (2020). Animal models for COVID-19. Nature, 586(7830), 509 515. Available from https://doi.org/10.1038/s41586-020-2787-6, Epub 2020 Sep 23. Available from 32967005.
Peng, M., Mo, Y., Wang, Y., Wu, P., Zhang, Y., Xiong, F., Guo, C., Wu, X., Li, Y., Li, X., Li, G., Xiong, W., & Zeng, Z. (2019). Neoantigen vaccine: An emerging tumor immunotherapy. Molecular Cancer, 18(1), 128. Available from https://doi.org/10.1186/s12943-019-1055-6. Available from 31443694, PMCID: PMC6708248.
Pimenova, T., Nazabal, A., Roschitzki, B., Seebacher, J., Rinner, O., & Zenobi, R. (2008). Epitope mapping on bovine prion protein using chemical cross-linking and mass spectrometry. Journal of Mass Spectrometry: JMS, 43(2), 185 195. Available from https://doi.org/ 10.1002/jms.1280. Available from 17924399.
Rappuoli, R. (2001). Reverse vaccinology, a genome-based approach to vaccine development. Vaccine, 19(17-19), 2688 2691. Available from https://doi.org/10.1016/s0264-410x(00) 00554-5. Available from 11257410.
Rappuoli, R., & Aderem, A. (2011). A 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature, 473(7348), 463 469. Available from https://doi.org/10.1038/nature10124. Available from 21614073.
Rappuoli, R., Bottomley, M. J., D’Oro, U., Finco, O., & De Gregorio, E. (2016). Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design. The Journal of Experimental Medicine, 213(4), 469 481. Available from https://doi.org/10.1084/ jem.20151960, Epub 2016 Mar 28. Available from 27022144.
Reche, P. A., Glutting, J. P., & Reinherz, E. L. (2002). Prediction of MHC class I binding pep tides using profile motifs. Human Immunology, 63(9), 701 709. Available from https://doi. org/10.1016/s0198-8859(02)00432-9. Available from 12175724.
Seib, K. L., Zhao, X., & Rappuoli, R. (2012). Developing vaccines in the era of genomics: A decade of reverse vaccinology. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 18 (Suppl. 5), 109 116. Available from https://doi.org/10.1111/j.1469-0691.2012.03939.x, Epub 2012 Aug 6. Available from 22882709.
Van Regenmortel, M. H. (2016). Structure-based reverse vaccinology failed in the case of HIV because it disregarded accepted immunological theory. International Journal of Molecular Sciences., 17(9), 1591. Available from https://doi.org/10.3390/ijms17091591. Available from 27657055, PMCID: PMC5037856.
Zheng, S. Y., Yu, B., Zhang, K., Chen, M., Hua, Y. H., Yuan, S., Watt, R. M., Zheng, B. J., Yuen, K. Y., & Huang, J. D. (2012). Comparative immunological evaluation of recombinant Salmonella typhimurium strains expressing model antigens as live oral vaccines. BMC Immunology, 13, 54. Available from https://doi.org/10.1186/1471-2172-13-54. Available from 23013063, PMCID: PMC3503649.