 
					
					
						Superstructure					
				 
				
					
						 المؤلف:  
						Hurd, A. E. and Loeb, P. A.
						 المؤلف:  
						Hurd, A. E. and Loeb, P. A.					
					
						 المصدر:  
						Ch. 3 in An Introduction to Nonstandard Real Analysis. New York: Academic Press, 1985.
						 المصدر:  
						Ch. 3 in An Introduction to Nonstandard Real Analysis. New York: Academic Press, 1985.					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 13-2-2022
						13-2-2022
					
					
						 1227
						1227					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Superstructure
In nonstandard analysis, the limitation to first-order analysis can be avoided by using a construction known as a superstructure. Superstructures are constructed in the following manner. Let  be an arbitrary set whose elements are not sets, and call the elements of
 be an arbitrary set whose elements are not sets, and call the elements of  "individuals." Define inductively a sequence of sets with
 "individuals." Define inductively a sequence of sets with  and, for each natural number
 and, for each natural number  ,
,
and let
Then  is called the superstructure over
 is called the superstructure over  . An element of
. An element of  is an entity of
 is an entity of  .
.
Using the definition of ordered pair provided by Kuratowski, namely ![(a,b)=<span style=]() {{a},{a,b}}" src="https://mathworld.wolfram.com/images/equations/Superstructure/Inline9.svg" style="height:22px; width:155px" />, it follows that
{{a},{a,b}}" src="https://mathworld.wolfram.com/images/equations/Superstructure/Inline9.svg" style="height:22px; width:155px" />, it follows that  for any
 for any  . Therefore,
. Therefore,  , and for any function
, and for any function  from
 from  into
 into  , we have
, we have  . Now assume that the set
. Now assume that the set  is (in one-to-one correspondence with) the set of real numbers
 is (in one-to-one correspondence with) the set of real numbers  , and then the relation
, and then the relation  which describes continuity of a function at a point is a member of
 which describes continuity of a function at a point is a member of  . Careful consideration shows that, in fact, all the objects studied in classical analysis over
. Careful consideration shows that, in fact, all the objects studied in classical analysis over  are entities of this superstructure. Thus, first-order formulas about
 are entities of this superstructure. Thus, first-order formulas about  are sufficient to study even what is normally done in classical analysis using second-order reasoning.
 are sufficient to study even what is normally done in classical analysis using second-order reasoning.
To do nonstandard analysis on the superstructure  , one forms an ultrapower of the relational structure
, one forms an ultrapower of the relational structure  . Los' theorem yields the transfer principle of nonstandard analysis.
. Los' theorem yields the transfer principle of nonstandard analysis.
REFERENCES
Albeverio, S.; Fenstad, J.; Hoegh-Krohn, R.; and Lindstrøom, T. Nonstandard Methods in Stochastic Analysis and Mathematical Physics. New York: Academic Press, p. 16, 1986.
Hurd, A. E. and Loeb, P. A. Ch. 3 in An Introduction to Nonstandard Real Analysis. New York: Academic Press, 1985.
				
				
					
					 الاكثر قراءة في  المنطق
					 الاكثر قراءة في  المنطق					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة