 
					
					
						Interpretation					
				 
				
					
						 المؤلف:  
						Chang, C.-L. and Lee, R. C.-T
						 المؤلف:  
						Chang, C.-L. and Lee, R. C.-T					
					
						 المصدر:  
						Symbolic Logic and Mechanical Theorem Proving. New York: Academic Press, 1997.
						 المصدر:  
						Symbolic Logic and Mechanical Theorem Proving. New York: Academic Press, 1997.					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 30-1-2022
						30-1-2022
					
					
						 1338
						1338					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				 Interpretation
An interpretation of first-order logic consists of a non-empty domain  and mappings for function and predicate symbols. Every
 and mappings for function and predicate symbols. Every  -place function symbol is mapped to a function from
-place function symbol is mapped to a function from  to
 to  , and every
, and every  -place predicate symbol is mapped to a function from
-place predicate symbol is mapped to a function from  to the set comprised of two values true and false.
 to the set comprised of two values true and false.
The domain  is the range of all variables in formulas of first-order logic, and is called the domain of the interpretation.
 is the range of all variables in formulas of first-order logic, and is called the domain of the interpretation.
For a given interpretation, the truth table of any formula is defined by the following rules.
1. The truth tables for propositional connectives apply to evaluate the value of  (
 ( AND
 AND  ),
),  (
 ( OR
 OR  ),
),  (
 ( implies
 implies  ), and
), and  (NOT
 (NOT  ).
).
2.  ("for all
 ("for all  ,
,  ") is true if
") is true if  is true for any element of
 is true for any element of  as value of
 as value of  at free occurrences of
 at free occurrences of  in
 in  . Otherwise,
. Otherwise,  is false.
 is false.
3.  ("there exists an
 ("there exists an  such that
 such that  ") is true if
") is true if  is true for at least one element of
 is true for at least one element of  as value of
 as value of  at free occurrences of
 at free occurrences of  in
 in  . Otherwise,
. Otherwise,  is false.
 is false.
Truth tables for infinite domains of interpretation are infinite. The formulas of first-order logic that are tautologies in any interpretation are called valid formulas. A formula is called satisfiable if it takes at least one true value in some interpretation. A formula whose truth table contains only false in any interpretation is called unsatisfiable.
The Löwenheim-Skolem theorem establishes that any satisfiable formula of first-order logic is satisfiable in an  (aleph-0) domain of interpretation. Hence, aleph-0 domains are sufficient for interpretation of first-order logic.
 (aleph-0) domain of interpretation. Hence, aleph-0 domains are sufficient for interpretation of first-order logic.
REFERENCES
Chang, C.-L. and Lee, R. C.-T. Symbolic Logic and Mechanical Theorem Proving. New York: Academic Press, 1997.
Kleene, S. C. Mathematical Logic. New York: Dover, 2002.
Mendelson, E. Introduction to Mathematical Logic, 4th ed. London: Chapman & Hall, pp. 12 and 57, 1997. 
				
				
					
					 الاكثر قراءة في  المنطق
					 الاكثر قراءة في  المنطق					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة