 
					
					
						Confluent					
				 
				
					
						 المؤلف:  
						Baader, F. and Nipkow, T.
						 المؤلف:  
						Baader, F. and Nipkow, T.					
					
						 المصدر:  
						Term Rewriting and All That. Cambridge, England: Cambridge University Press, 1999.
						 المصدر:  
						Term Rewriting and All That. Cambridge, England: Cambridge University Press, 1999.					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 22-1-2022
						22-1-2022
					
					
						 1271
						1271					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Confluent
 

A reduction system is called confluent (or globally confluent) if, for all  ,
,  , and
, and  such that
 such that  and
 and  , there exists a
, there exists a  such that
 such that  and
 and  . A reduction system is said to be locally confluent if, for all
. A reduction system is said to be locally confluent if, for all  ,
,  ,
,  such that
 such that  and
 and  , there exists a
, there exists a  such that
 such that  and
 and  . Here, the notation
. Here, the notation  indicates that
 indicates that  is reduced to
 is reduced to  in one step, and
 in one step, and  indicates that
 indicates that  is reduced to
 is reduced to  in zero or more steps.
 in zero or more steps.
A reduction system is confluent iff it has Church-Rosser property (Wolfram 2002, p. 1036). In finitely terminating reduction systems, global and local confluence are equivalent, for instance in the systems shown above. Reduction systems that are both finitely terminating and confluent are called convergent. In a convergent reduction system, unique normal forms exist for all expressions.
The problem of determining whether a given reduction system is confluent is recursively undecidable.
The property of being confluent is called confluence. Confluence is a necessary condition for causal invariance.
REFERENCES
Baader, F. and Nipkow, T. Term Rewriting and All That. Cambridge, England: Cambridge University Press, 1999.
Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, pp. 507 and 1036-1037, 2002.
				
				
					
					 الاكثر قراءة في  المنطق
					 الاكثر قراءة في  المنطق					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة