 
					
					
						Recursively Undecidable					
				 
				
					
						 المؤلف:  
						Davis, M.
						 المؤلف:  
						Davis, M.					
					
						 المصدر:  
						Computability and Unsolvability. New York: Dover 1982.Kleene, S. C. Mathematical Logic. New York: Dover, 2002.
						 المصدر:  
						Computability and Unsolvability. New York: Dover 1982.Kleene, S. C. Mathematical Logic. New York: Dover, 2002.					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 20-1-2022
						20-1-2022
					
					
						 1210
						1210					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Recursively Undecidable
Determination of whether predicate  is true or false for any given values of
 is true or false for any given values of  , ...,
, ...,  is called its decision problem. The decision problem for predicate
 is called its decision problem. The decision problem for predicate  is called recursively decidable if there is a total recursive function
 is called recursively decidable if there is a total recursive function  such that
 such that
	
		
			| ![f(x_1,...,x_n)=<span style=]() {1   if P(x_1,...,x_n) is true; 0   if P(x_1,...,x_n) is false. " src="https://mathworld.wolfram.com/images/equations/RecursivelyUndecidable/NumberedEquation1.svg" style="height:53px; width:286px" /> | (1) | 
	
Given the equivalence of computability and recursiveness, this definition may be restated with reference to computable functions instead of recursive functions.
The halting problem was one of the first to be shown recursively undecidable. The formulation of recursive undecidability of the halting problem and many other recursively undecidable problems is based on Gödel numbers. For instance, the problem of deciding for any given  whether the Turing machine whose Gödel number is
 whether the Turing machine whose Gödel number is  is total is recursively undecidable. Hilbert's tenth problem is perhaps the most famous recursively undecidable problem.
 is total is recursively undecidable. Hilbert's tenth problem is perhaps the most famous recursively undecidable problem.
Most proofs of recursive undecidability use reduction. They show that recursive decidability of the problem under study would imply recursive decidability of another problem known to be recursively undecidable. As far as direct proofs are concerned, they usually employ the idea of the Cantor diagonal method.
REFERENCES
Davis, M. Computability and Unsolvability. New York: Dover 1982.Kleene, S. C. Mathematical Logic. New York: Dover, 2002.
Rogers, H. Theory of Recursive Functions and Effective Computability. Cambridge, MA: MIT Press, 1987.
				
				
					
					 الاكثر قراءة في  المنطق
					 الاكثر قراءة في  المنطق					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة