 
					
					
						Goodstein,s Theorem					
				 
				
					
						 المؤلف:  
						Borwein, J. and Bailey, D.
						 المؤلف:  
						Borwein, J. and Bailey, D.					
					
						 المصدر:  
						Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters
						 المصدر:  
						Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 18-1-2022
						18-1-2022
					
					
						 1341
						1341					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Goodstein's Theorem
For all  , there exists a
, there exists a  such that the
 such that the  th term of the Goodstein sequence
th term of the Goodstein sequence  . In other words, every Goodstein sequence converges to 0.
. In other words, every Goodstein sequence converges to 0.
The secret underlying Goodstein's theorem is that the hereditary representation of  in base
 in base  mimics an ordinal notation for ordinals less than some number. For such ordinals, the base bumping operation leaves the ordinal fixed whereas the subtraction of one decreases the ordinal. But these ordinals are well ordered, and this allows us to conclude that a Goodstein sequence eventually converges to zero.
 mimics an ordinal notation for ordinals less than some number. For such ordinals, the base bumping operation leaves the ordinal fixed whereas the subtraction of one decreases the ordinal. But these ordinals are well ordered, and this allows us to conclude that a Goodstein sequence eventually converges to zero.
Amazingly, Paris and Kirby showed in 1982 that Goodstein's theorem is not provable in ordinary Peano arithmetic (Borwein and Bailey 2003, p. 35).
REFERENCES
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, pp. 34-35, 2003.
Goodstein, R. L. "On the Restricted Ordinal Theorem." J. Symb. Logic 9, 33-41, 1944.
Henle, J. M. An Outline of Set Theory. New York: Springer-Verlag, 1986.
				
				
					
					 الاكثر قراءة في  المنطق
					 الاكثر قراءة في  المنطق					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة