1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية المجموعات :

Rank

المؤلف:  Biggs, N. L.

المصدر:  Algebraic Graph Theory, 2nd ed. Cambridge, England: Cambridge University Press

الجزء والصفحة:  ...

12-1-2022

815

Rank

The word "rank" refers to several related concepts in mathematics involving graphs, groups, matrices, quadratic forms, sequences, set theory, statistics, and tensors.

In graph theory, the graph rank of a graph G is defined as r(G)=n-c, where n is the number of vertices on G and c is the number of connected components (Biggs 1993, p. 25).

In set theory, rank is a (class) function from sets to ordinal numbers. The rank of a set is the least ordinal number greater than the rank of any member of the set (Mirimanoff 1917; Moore 1982, pp. 261-262; Rubin 1967, p. 214). The proof that rank is well-defined uses the axiom of foundation.

For example, the empty set {} has rank 0 (since it has no members and 0 is the least ordinal number), {{}} has rank 1 (since {}, its only member, has rank 0), {{{}}} has rank 2, and {{},{{}},{{{}}},...} has rank omega. Every ordinal number has itself as its rank.

Mirimanoff (1917) showed that, assuming the class of urelements is a set, for any ordinal number alpha, the class of all sets having rank alpha is a set, i.e., not a proper class (Rubin 1967, p. 216) The number of sets having rank k for k=0, 1, ... are 1, 1, 2, 12, 65520, ... (OEIS A038081), and the number of sets having rank at most k is 2^(2^(·^(·^(·^2))))_()_(k), 1, 2, 4, 16, 65536, ... (OEIS A014221).

The rank of a mathematical object is defined whenever that object is free. In general, the rank of a free object is the cardinal number of the free generating subset G.


REFERENCES

Biggs, N. L. Algebraic Graph Theory, 2nd ed. Cambridge, England: Cambridge University Press, p. 73, 1993.Mirimanoff, D. "Les antinomies de Russell et de Burali-Forti et le problème fondamental de la théorie des ensembles." Enseign. math. 19, 37-52, 1917.Moore, G. H. Zermelo's Axiom of Choice: Its Origin, Development, and Influence. New York: Springer-Verlag, 1982.Rubin, J. E. Set Theory for the Mathematician. New York: Holden-Day, 1967.Sloane, N. J. A. Sequences A014221 and A038081 in "The On-Line Encyclopedia of Integer Sequences."

EN

تصفح الموقع بالشكل العمودي