1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : الاحتمالات و الاحصاء :

Bivariate Normal Distribution

المؤلف:  Abramowitz, M. and Stegun, I. A.

المصدر:  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover

الجزء والصفحة:  ...

28-2-2021

2855

Bivariate Normal Distribution

The bivariate normal distribution is the statistical distribution with probability density function

 P(x_1,x_2)=1/(2pisigma_1sigma_2sqrt(1-rho^2))exp[-z/(2(1-rho^2))],

(1)

where

 z=((x_1-mu_1)^2)/(sigma_1^2)-(2rho(x_1-mu_1)(x_2-mu_2))/(sigma_1sigma_2)+((x_2-mu_2)^2)/(sigma_2^2),

(2)

and

 rho=cor(x_1,x_2)=(V_(12))/(sigma_1sigma_2)

(3)

is the correlation of x_1 and x_2 (Kenney and Keeping 1951, pp. 92 and 202-205; Whittaker and Robinson 1967, p. 329) and V_(12) is the covariance.

The probability density function of the bivariate normal distribution is implemented as MultinormalDistribution[{mu1, mu2}{{sigma11, sigma12}{sigma12, sigma22}}] in the Wolfram Language package MultivariateStatistics` .

The marginal probabilities are then

P(x_1) = int_(-infty)^inftyP(x_1,x_2)dx_2

(4)

= 1/(sigma_1sqrt(2pi))e^(-(x_1-mu_1)^2/(2sigma_1^2))

(5)

and

P(x_2) = int_(-infty)^inftyP(x_1,x_2)dx_1

(6)

= 1/(sigma_2sqrt(2pi))e^(-(x_2-mu_2)^2/(2sigma_2^2))

(7)

(Kenney and Keeping 1951, p. 202).

Let Z_1 and Z_2 be two independent normal variates with means mu_i=0 and sigma_i^2=1 for i=1, 2. Then the variables a_1 and a_2 defined below are normal bivariates with unit variance and correlation coefficient rho:

a_1 = sqrt((1+rho)/2)z_1+sqrt((1-rho)/2)z_2

(8)

a_2 = sqrt((1+rho)/2)z_1-sqrt((1-rho)/2)z_2.

(9)

To derive the bivariate normal probability function, let X_1 and X_2 be normally and independently distributed variates with mean 0 and variance 1, then define

Y_1 = mu_1+sigma_(11)X_1+sigma_(12)X_2

(10)

Y_2 = mu_2+sigma_(21)X_1+sigma_(22)X_2

(11)

(Kenney and Keeping 1951, p. 92). The variates Y_1 and Y_2 are then themselves normally distributed with means mu_1 and mu_2, variances

sigma_1^2 = sigma_(11)^2+sigma_(12)^2

(12)

sigma_2^2 = sigma_(21)^2+sigma_(22)^2,

(13)

and covariance

 V_(12)=sigma_(11)sigma_(21)+sigma_(12)sigma_(22).

(14)

The covariance matrix is defined by

 V_(ij)=[sigma_1^2 rhosigma_1sigma_2; rhosigma_1sigma_2 sigma_2^2],

(15)

where

 rho=(V_(12))/(sigma_1sigma_2)=(sigma_(11)sigma_(21)+sigma_(12)sigma_(22))/(sigma_1sigma_2).

(16)

Now, the joint probability density function for x_1 and x_2 is

 f(x_1,x_2)dx_1dx_2=1/(2pi)e^(-(x_1^2+x_2^2)/2)dx_1dx_2,

(17)

but from (◇) and (◇), we have

 [y_1-mu_1; y_2-mu_2]=[sigma_(11) sigma_(12); sigma_(21) sigma_(22)][x_1; x_2].

(18)

As long as

 |sigma_(11) sigma_(12); sigma_(21) sigma_(22)|!=0,

(19)

this can be inverted to give

[x_1; x_2] = [sigma_(11) sigma_(12); sigma_(21) sigma_(22)]^(-1)[y_1-mu_1; y_2-mu_2]

(20)

= 1/(sigma_(11)sigma_(22)-sigma_(12)sigma_(21))[sigma_(22) -sigma_(12); -sigma_(21) sigma_(11)][y_1-mu_1; y_2-mu_2].

(21)

Therefore,

 x_1^2+x_2^2=([sigma_(22)(y_1-mu_1)-sigma_(12)(y_2-mu_2)]^2)/((sigma_(11)sigma_(22)-sigma_(12)sigma_(21))^2) 
 +([-sigma_(21)(y_1-mu_1)+sigma_(11)(y_2-mu_2)]^2)/((sigma_(11)sigma_(22)-sigma_(12)sigma_(21))^2),

(22)

and expanding the numerator of (22) gives

 sigma_(22)^2(y_1-mu_1)^2-2sigma_(12)sigma_(22)(y_1-mu_1)(y_2-mu_2)+sigma_(12)^2(y_2-mu_2)^2+sigma_(21)^2(y_1-mu_1)^2-2sigma_(11)sigma_(21)(y_1-mu_1)(y_2-mu_2)+sigma_(11)^2(y_2-mu_2)^2,

(23)

so

 (x_1^2+x_2^2)(sigma_(11)sigma_(22)-sigma_(12)sigma_(21))^2 
=(y_1-mu_1)^2(sigma_(21)^2+sigma_(22)^2)-2(y_1-mu_1)(y_2-mu_2)(sigma_(11)sigma_(21)+sigma_(12)sigma_(22))+(y_2-mu_2)^2(sigma_(11)^2+sigma_(12)^2) 
=sigma_2^2(y_1-mu_1)^2-2(y_1-mu_1)(y_2-mu_2)(rhosigma_1sigma_2)+sigma_1^2(y_2-mu_2)^2 
=sigma_1^2sigma_2^2[((y_1-mu_1)^2)/(sigma_1^2)-(2rho(y_1-mu_1)(y_2-mu_2))/(sigma_1sigma_2)+((y_2-mu_2)^2)/(sigma_2^2)].

(24)

Now, the denominator of (◇) is

 sigma_(11)^2sigma_(21)^2+sigma_(11)^2sigma_(22)^2+sigma_(12)^2sigma_(21)^2+sigma_(12)^2sigma_(22)^2-sigma_(11)^2sigma_(21)^2 
 -2sigma_(11)sigma_(12)sigma_(21)sigma_(22)-sigma_(12)^2sigma_(22)^2=(sigma_(11)sigma_(22)-sigma_(12)sigma_(21))^2,

(25)

so

1/(1-rho^2) = 1/(1-(V_(12)^2)/(sigma_1^2sigma_2^2))

(26)

= (sigma_1^2sigma_2^2)/(sigma_1^2sigma_2^2-V_(12)^2)

(27)

= (sigma_1^2sigma_2^2)/((sigma_(11)^2+sigma_(12)^2)(sigma_(21)^2+sigma_(22)^2)-(sigma_(11)sigma_(21)+sigma_(12)sigma_(22))^2).

(28)

can be written simply as

 1/(1-rho^2)=(sigma_1^2sigma_2^2)/((sigma_(11)sigma_(22)-sigma_(12)sigma_(21))^2),

(29)

and

 x_1^2+x_2^2=1/(1-rho^2)[((y_1-mu_1)^2)/(sigma_1^2)-(2rho(y_1-mu_1)(y_2-mu_2))/(sigma_1sigma_2)+((y_2-mu_2)^2)/(sigma_2^2)].

(30)

Solving for x_1 and x_2 and defining

(31)

gives

x_1 =

(32)

x_2 =

(33)

But the Jacobian is

J((x_1,x_2)/(y_1,y_2)) =

(34)

=

(35)

=

(36)

so

 dx_1dx_2=(dy_1dy_2)/(sigma_1sigma_2sqrt(1-rho^2))

(37)

and

 1/(2pi)e^(-(x_1^2+x_2^2)/2)dx_1dx_2=1/(2pisigma_1sigma_2sqrt(1-rho^2))exp[-z/(2(1-rho^2))]dy_1dy_2,

(38)

where

 z=((y_1-mu_1)^2)/(sigma_1^2)-(2rho(y_1-mu_1)(y_2-mu_2))/(sigma_1sigma_2)+((y_2-mu_2)^2)/(sigma_2^2).

(39)

Q.E.D.

The characteristic function of the bivariate normal distribution is given by

phi(t_1,t_2) = int_(-infty)^inftyint_(-infty)^inftye^(i(t_1x_1+t_2x_2))P(x_1,x_2)dx_1dx_2

(40)

= Nint_(-infty)^inftyint_(-infty)^inftye^(i(t_1x_1+t_2x_2))exp[-z/(2(1-rho^2))]dx_1dx_2,

(41)

where

 z=[((x_1-mu_1)^2)/(sigma_1^2)-(2rho(x_1-mu_1)(x_2-mu_2))/(sigma_1sigma_2)+((x_2-mu_2)^2)/(sigma_2^2)]

(42)

and

 N=1/(2pisigma_1sigma_2sqrt(1-rho^2)).

(43)

Now let

u = x_1-mu_1

(44)

w = x_2-mu_2.

(45)

Then

(46)

where

v = -1/(2(1-rho^2))1/(sigma_1^2)[u^2-(2rhosigma_1w)/(sigma_2)u]

(47)

= (e^(i(t_1mu_1+t_2mu_2)))/(2pisigma_1sigma_2sqrt(1-rho^2)).

(48)

Complete the square in the inner integral

(49)

Rearranging to bring the exponential depending on w outside the inner integral, letting

 v=u-rho(sigma_1w)/(sigma_2),

(50)

and writing

 e^(it_1u)=cos(t_1u)+isin(t_1u)

(51)

gives

(52)

Expanding the term in braces gives

(53)

But e^(-ax^2)sin(bx) is odd, so the integral over the sine term vanishes, and we are left with

(54)

Now evaluate the Gaussian integral

int_(-infty)^inftye^(ikx)e^(-ax^2)dx = int_(-infty)^inftye^(-ax^2)cos(kx)dx

(55)

= sqrt(pi/a)e^(-k^2/4a)

(56)

to obtain the explicit form of the characteristic function,

(57)

In the singular case that

 |sigma_(11) sigma_(12); sigma_(21) sigma_(22)|=0

(58)

(Kenney and Keeping 1951, p. 94), it follows that

 sigma_(11)sigma_(22)=sigma_(12)sigma_(21)

(59)

y_1 = mu_1+sigma_(11)x_1+sigma_(12)x_2

(60)

y_2 = mu_2+(sigma_(12)sigma_(21))/(sigma_(11))x_2

(61)

= mu_2+(sigma_(11)sigma_(21)x_1+sigma_(12)sigma_(21)x_2)/(sigma_(11))

(62)

= mu_2+(sigma_(21))/(sigma_(11))(sigma_(11)x_1+sigma_(12)x_2),

(63)

so

y_1 = mu_1+x_3

(64)

y_2 = mu_2+(sigma_(21))/(sigma_(11))x_3,

(65)

where

x_3 = y_1-mu_1

(66)

= (sigma_(11))/(sigma_(21))(y_2-mu_2).

(67)

The standardized bivariate normal distribution takes sigma_1=sigma_2=1 and mu_1=mu_2=0. The quadrant probability in this special case is then given analytically by

P(x_1<=0,x_2<=0) = P(x_1>=0,x_2>=0)

(68)

= int_(-infty)^0int_(-infty)^0P(x_1,x_2)dx_1dx_2

(69)

= 1/4+(sin^(-1)rho)/(2pi)

(70)

(Rose and Smith 1996; Stuart and Ord 1998; Rose and Smith 2002, p. 231). Similarly,

P(x_1<=0,x_2>=0) = P(x_1>=0,x_2<=0)

(71)

= int_(-infty)^0int_0^inftyP(x_1,x_2)dx_1dx_2

(72)

= (cos^(-1)rho)/(2pi).

(73)


REFERENCES:

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 936-937, 1972.

Holst, E. "The Bivariate Normal Distribution." http://www.ami.dk/research/bivariate/.

Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, 1951.

Kotz, S.; Balakrishnan, N.; and Johnson, N. L. "Bivariate and Trivariate Normal Distributions." Ch. 46 in Continuous Multivariate Distributions, Vol. 1: Models and Applications, 2nd ed. New York: Wiley, pp. 251-348, 2000.

Rose, C. and Smith, M. D. "The Multivariate Normal Distribution." Mathematica J. 6, 32-37, 1996.

Rose, C. and Smith, M. D. "The Bivariate Normal." §6.4 A in Mathematical Statistics with Mathematica. New York: Springer-Verlag, pp. 216-226, 2002.

Spiegel, M. R. Theory and Problems of Probability and Statistics. New York: McGraw-Hill, p. 118, 1992.

Stuart, A.; and Ord, J. K. Kendall's Advanced Theory of Statistics, Vol. 1: Distribution Theory, 6th ed. New York: Oxford University Press, 1998.

Whittaker, E. T. and Robinson, G. "Determination of the Constants in a Normal Frequency Distribution with Two Variables" and "The Frequencies of the Variables Taken Singly." §161-162 in The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 324-328, 1967.

EN

تصفح الموقع بالشكل العمودي