تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
Molecular Forces—A More Quantitative Look
المؤلف:
E. R. Huggins
المصدر:
Physics 2000
الجزء والصفحة:
546
16-12-2020
1758
Molecular Forces—A More Quantitative Look
It is commonly believed that quantum mechanics, which can be used to predict the detailed shape of electron clouds, is needed for any quantitative understanding of molecular forces. This is only partly true. We can get a fair understanding of molecular forces from Newtonian mechanics, as was demonstrated by the student Bob Piela in a project for an introductory physics course. This section will closely follow the approach presented in Piela’s project. In this section we will discuss only the simplest of all molecules, the hydrogen molecule ion consisting of two protons and one electron. We will use Newtonian mechanics to get a better picture of how the electron holds the molecule together, and to see why the lower, the more negative the energy of the electron, the more tightly the protons are bound together.
If you do a straightforward Newtonian mechanics calculation of the hydrogen molecule ion, letting all three particles move under the influence of the Coulomb forces between them, the system eventually flies apart. As a number of student projects using computer calculations have shown, eventually the electron gets captured by one of the protons and the other proton gets kicked out of the system. With Newtonian mechanics we cannot explain the stability of the hydrogen molecule ion, quantum mechanics is required for that.
Piela avoided the stability problem by assuming that the two protons were fixed at their experimentally known separation of 1.0 7 × 10– 8 cm (1.07 angstroms) as shown in Figure (1a), and let the computer calculate the orbit of the electron about the two fixed protons, as seen in Figure (1b). By letting the calculation run for a long time and plotting the position of the electron at equal intervals of time, as in a strobe photograph of the electron’s motion, one obtains the dot pattern seen in Figure (1c). This dot pattern can be thought of as the classical electron cloud pattern for the electron.
Figure 1: Orbit of an electron about two fixed protons.