تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
THE CONCAVE MIRROR
المؤلف: S. Gibilisco
المصدر: Physics Demystified
الجزء والصفحة: 511
9-11-2020
2549
THE CONCAVE MIRROR
A concave mirror reflects light rays in a manner similar to the way a convex lens refracts them. When incident rays are parallel to each other and to the axis of the mirror, they are reflected so that they converge at a focal point (Fig. 1a). When a point source of light is placed at the focal point, the concave mirror reflects the rays so that they emerge parallel (see Fig. 1b).
Fig. 1. (a) A concave mirror focuses parallel light rays to a point. (b) The same mirror collimates light from a point source at the focus.
The properties of a concave mirror depend on the size of the reflecting surface, as well as on the radius of curvature. The larger the light-gathering area, the greater is the light-gathering power. The smaller the radius of curvature, the shorter is the focal length. If you look at your reflection in a convex mirror, you will see the same effect that you would observe if you placed a convex lens up against a flat mirror.
Concave mirrors can have spherical surfaces, but the finest mirrors have surfaces that follow the contour of an idealized three-dimensional figure called a paraboloid. A paraboloid results from the rotation of a parabola, such as that having the equation y = x2 in rectangular coordinates, around its axis. When the radius of curvature is large compared with the size of the reflecting surface, the difference between a spherical mirror and a paraboloidal mirror (more commonly called a parabolic mirror) is not noticeable to the casual observer. However, it makes a big difference when the mirror is used in a telescope.