1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية الاعداد :

Quotient

المؤلف:  Graham, R. L.; Knuth, D. E.; and Patashnik, O

المصدر:  Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley

الجزء والصفحة:  ...

18-11-2019

1075

Quotient

The term "quotient" is most commonly used to refer to the ratio q=r/s of two quantities r and s, where s!=0.

Less commonly, the term quotient is also used to mean the integer part of such a ratio. In the Wolfram Language, the command Quotient[rs] is defined in this latter sense, returning

 rs=|_r/s_|,

where |_x_| is the floor function. This is sometimes called integer division.

Since usage concerning fractional part/value and integer part/value can be confusing, the following table gives a summary of names and notations used. Here, S&O indicates Spanier and Oldham (1987).

notation name S&O Graham et al. Wolfram Language
[x] ceiling function -- ceiling, least integer Ceiling[x]
mod(m,n) congruence -- -- Mod[m, n]
|_x_| floor function Int(x) floor, greatest integer, integer part Floor[x]
x-|_x_| fractional value frac(x) fractional part or {x} SawtoothWave[x]
sgn(x)(|x|-|_|x|_|) fractional part Fp(x) no name FractionalPart[x]
sgn(x)|_|x|_| integer part Ip(x) no name IntegerPart[x]
nint(x) nearest integer function -- -- Round[x]
m
quotient -- -- Quotient[m, n]

REFERENCES:

Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994.

Spanier, J. and Oldham, K. B. An Atlas of Functions. Washington, DC: Hemisphere, p. 74, 1987.

EN

تصفح الموقع بالشكل العمودي