x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Zeilberger,s Algorithm
المؤلف: Graham, R. L.; Knuth, D. E.; and Patashnik, O.
المصدر: Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994.
الجزء والصفحة: ...
22-6-2019
1560
An algorithm which finds a polynomial recurrence for terminating hypergeometric identities of the form
where is a binomial coefficient, , , , , , are constant integers and , , , , , , and are complex numbers (Zeilberger 1990). The method was called creative telescoping by van der Poorten (1979), and led to the development of the amazing machinery of Wilf-Zeilberger pairs.
The also exists a -analog of the algorithm, called the q-Zeilberger algorithm.
REFERENCES:
Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994.
Koepf, W. "Algorithms for -fold Hypergeometric Summation." J. Symb. Comput. 20, 399-417, 1995.
Koepf, W. "Zeilberger's Algorithm." Ch. 7 in Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, pp. 93-123, 1998.
Krattenthaler, C. "HYP and HYPQ: The Mathematica Package HYP." http://radon.mat.univie.ac.at/People/kratt/hyp_hypq/hyp.html.
Paule, P. "The Paule/Schorn Implementation of Gosper's and Zeilberger's Algorithms." http://www.risc.uni-linz.ac.at/research/combinat/risc/software/PauleSchorn/.
Paule, P. and Riese, A. "A Mathematica -Analogue of Zeilberger's Algorithm Based on an Algebraically Motivated Approach to -Hypergeometric Telescoping." In Special Functions, -Series and Related Topics, Fields Institute Communications 14, 179-210, 1997.
Paule, P. and Schorn, M. "A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities." J. Symb. Comput. 20, 673-698, 1995.
Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. "Zeilberger's Algorithm." Ch. 6 in A=B. Wellesley, MA: A K Peters, pp. 101-119, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.
Riese, A. "A Generalization of Gosper's Algorithm to Bibasic Hypergeometric Summation." Electronic J. Combinatorics 1, No. 1, R19, 1-16, 1996. http://www.combinatorics.org/Volume_1/Abstracts/v1i1r19.html.
van der Poorten, A. "A Proof that Euler Missed... Apéry's Proof of the Irrationality of ." Math. Intel. 1, 196-203, 1979.
Wegschaider, K. Computer Generated Proofs of Binomial Multi-Sum Identities. Diploma Thesis, RISC. Linz, Austria: J. Kepler University, May 1997. http://www.risc.uni-linz.ac.at/research/combinat/risc/software/MultiSum/.
Zeilberger, D. "Doron Zeilberger's Maple Packages and Programs: EKHAD." http://www.math.temple.edu/~zeilberg/programs.html.
Zeilberger, D. "A Fast Algorithm for Proving Terminating Hypergeometric Series Identities." Discrete Math. 80, 207-211, 1990.
Zeilberger, D. "A Holonomic Systems Approach to Special Function Identities." J. Comput. Appl. Math. 32, 321-368, 1990.
Zeilberger, D. "The Method of Creative Telescoping." J. Symb. Comput. 11, 195-204, 1991.