1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Saalschütz,s Theorem

المؤلف:  Hardy, G. H.

المصدر:  Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea,

الجزء والصفحة:  ...

18-6-2019

2076

Saalschütz's Theorem
 _3F_2[-x,-y,-z; n+1,-x-y-z]=(Gamma(n+1)Gamma(x+y+n+1))/(Gamma(x+n+1)Gamma(y+n+1)) 
 ×(Gamma(y+z+n+1)Gamma(z+x+n+1))/(Gamma(z+n+1)Gamma(x+y+z+n+1)),

(1)

where _3F_2(a,b,c;d,e;z) is a generalized hypergeometric function and Gamma(z) is the gamma function. It can be derived from the Dougall-Ramanujan identity and written in the symmetric form

 _3F_2(a,b,c;d,e;1)=((d-a)_(|c|)(d-b)_(|c|))/(d_(|c|)(d-a-b)_(|c|))

(2)

for

 d+e=a+b+c+1

(3)

with c a nonpositive integer and (a)_n the Pochhammer symbol (Bailey 1935, p. 9; Petkovšek et al. 1996; Koepf 1998, p. 32). If one of ab, and c is nonpositive but it is not known which, an alternative formulation due to W. Gosper (pers. comm.) gives the form

 _3F_2(a,b,c;d,e;1) 
=(Gamma(d))/(Gamma(d-a)Gamma(d-b)Gamma(d-c))(Gamma(e))/(Gamma(e-a)Gamma(e-b)Gamma(e-c))(pi^2)/(cos(pid)cos(pie)+cos(pia)cos(pib)cos(pic)),

(4)

which is symmetric in (a,b,c) and (d,e).

If instead

 a+b+c+2=d+e,

(5)

then

 _3F_2(a,b,c;d,e;2) 
=pi^2(de-(a+1)(b+1)(c+1)+abc)/(cos(dpi)cos(epi)-cos(api)cos(bpi)cos(cpi))(Gamma(d))/(Gamma(d-a)Gamma(d-b)Gamma(d-c))(Gamma(e))/(Gamma(e-a)Gamma(e-b)Gamma(e-c))

(6)

(W. Gosper, pers. comm.).


REFERENCES:

Bailey, W. N. "Saalschütz's Theorem." §2.2 in Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, p. 9, 1935.

Dougall, J. "On Vandermonde's Theorem and Some More General Expansions." Proc. Edinburgh Math. Soc. 25, 114-132, 1907.

Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, p. 104, 1999.

Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, 1998.

Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A K Peters, pp. 43 and 126, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.

Saalschütz, L. "Eine Summationsformel." Z. für Math. u. Phys. 35, 186-188, 1890.

Saalschütz, L. "Über einen Spezialfall der hypergeometrischen Reihe dritter Ordnung." Z. für Math. u. Phys. 36, 278-295 and 321-327, 1891.

Shepard, W. F. "Summation of the Coefficients of Some Terminating Hypergeometric Series." Proc. London Math. Soc. 10, 469-478, 1912.

EN

تصفح الموقع بالشكل العمودي