Read More
Date: 30-3-2017
1916
Date: 25-4-2017
2202
Date: 26-11-2020
1674
|
Enriched and Depleted Uranium
Natural uranium mined from the earth contains the isotopes uranium-238, uranium-235 and uranium-234. The majority (99.2745%) of all the atoms in natural uranium are uranium-238. Most of the remaining atoms (0.72%) are uranium-235, and a slight trace (0.0055%) are uranium-234. Although all isotopes of uranium have similar chemical properties, each of the isotopes has significantly different nuclear properties. For reasons that will be discussed in later modules, the isotope uranium-235 is usually the desired material for use in reactors.
A vast amount of equipment and energy are expended in processes that separate the isotopes of uranium (and other elements). The details of these processes are beyond the scope of this module. These processes are called enrichment processes because they selectively increase the proportion of a particular isotope. The enrichment process typically starts with feed material that has the proportion of isotopes that occur naturally. The process results in two types of
In the case of uranium, the natural uranium ore is 0.72 a/o uranium-235. The desired outcome of the enrichment process is to produce enriched uranium. Enriched uranium is defined as uranium in which the isotope uranium-235 has a concentration greater than its natural value. The enrichment process will also result in the byproduct of depleted uranium. Depleted uranium is defined as uranium in which the isotope uranium-235 has a concentration less than its natural value. Although depleted uranium is referred to as a by-product of the enrichment process, it does have uses in the nuclear field and in commercial and defense industries.
|
|
مخاطر خفية لمكون شائع في مشروبات الطاقة والمكملات الغذائية
|
|
|
|
|
"آبل" تشغّل نظامها الجديد للذكاء الاصطناعي على أجهزتها
|
|
|
|
|
تستخدم لأول مرة... مستشفى الإمام زين العابدين (ع) التابع للعتبة الحسينية يعتمد تقنيات حديثة في تثبيت الكسور المعقدة
|
|
|