المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
غزوة الحديبية والهدنة بين النبي وقريش
2024-11-01
بعد الحديبية افتروا على النبي « صلى الله عليه وآله » أنه سحر
2024-11-01
المستغفرون بالاسحار
2024-11-01
المرابطة في انتظار الفرج
2024-11-01
النضوج الجنسي للماشية sexual maturity
2024-11-01
المخرجون من ديارهم في سبيل الله
2024-11-01


Antoine Deparcieux  
  
747   02:07 صباحاً   date: 21-3-2016
Author : H L L Busard
Book or Source : Biography in Dictionary of Scientific Biography
Page and Part : ...


Read More
Date: 23-3-2016 1222
Date: 23-3-2016 1512
Date: 31-3-2016 684

Born: 28 October 1703 in Clotet-de-Cessous, France
Died: 2 September 1768 in Paris, France

 

Antoine Deparcieux's father was Jean-Antoine Deparcieux while his mother was Jeanne Donzel. It was a poor family, Antoine's father being a farm worker. He attended the schools of Porte and Saint-Florent where he learned to read and write. Sadly, before his twelfth birthday, Antoine became an orphan and his education and upbringing became the responsibility of his elder brother Pierre Deparcieux.

When Antoine was fifteen years old, Pierre sent him to study at the Jesuit College in Alès in southeastern France. This would not have been possible without the financial support of at least one patron. He studied at this College until he was seventeen years old. He showed great promise in scientific subjects at the College and when he left he went to Paris to study mathematics. Again he had financial support, this time from Montcarville who was his patron.

In Paris Deparcieux found that the financial support provided by Montcarville was not sufficient to allow him to study without a job. He became a maker of sundials and, although this is not the reason that he appears in this archive, it was an occupation which at that time gave him a reasonable income. He was also interested in hydrodynamics and hydraulics and he moved on from making sundials to invent other machinery, in particular pumps. He is chiefly known, however, for his work on mathematical and statistical tables.

In 1741 Deparcieux published Nouveaux traités de trigonométrie rectiligne et sphérique which consisted of tables of sins, tans, secs (calculated to seven decimal places), and log sins and log tans (calculated to eight decimal places). This work also contains interesting trigonometric formulae for tan a/2.

In 1746 Deparcieux published a treatise on annuities and mortality: it was one of the first statistical work of its kind and is the main reason for his fame. Deparcieux's interest in mortality tables resulted from his interest in life expectancy which he had investigated in several different contexts. Lorenzo de Tonti from Naples was a financier who had devised the tontine life insurance plan in the seventeenth century. Those taking part in the plan contributed money which eventually went to the one who survives all the others. Deparcieux studied the way that such plans worked, and he also studied life expectancy in individual families and religious communities. The reason for choosing data such groups was that Deparcieux was fully aware that if one looked at births and deaths in a city (as had been done before), then migration made the data unreliable. However, as Johnson and Kotz write in [3]:-

... the results obtained for restricted populations, although accurately derived - even according to current standards - could not reasonably be ascribed to surrounding areas, a point which caused some criticism.

The results of Deparcieux's investigations were published in the 1746 treatise Essai sur les probabilités de la durée de la vie humaine. Busard writes in [1]:-

Deparcieux showed a real progress in his theoretical explanation of the properties of the tables of mortality. However, his tables, which were for a long time the only ones on life expectancies in France, indicated too small a value for the probable life expectancy at every age.

In 1746 Deparcieux was elected a member of the Académie des Sciences and it would appear his 1746 publication was the reason for this election.

Deparcieux was, as we have indicated above, interested in hydrodynamics. He devised a way of bringing the water of the river Yvette to Paris and, although he did not see his plan put into being during his lifetime, it was carried out after his death.

Nicolas, in [4], describes Deparcieux's character:-

He was modest, not overambitious always keeping in mind his humble origins.


 

  1. H L L Busard, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830901140.html

Articles:

  1. J Bertrand, l'Académie des sciences et les académiciens de 1666 à 1793 (Paris, 1869), 167-168, 288-289.
  2. N L Johnson and S Kotz, Antoine Deparcieux, in N L Johnson and S Kotz (eds.), Leading personalities in statistical sciences (New York, 1997), 31-32.
  3. M Nicolas, Antoine Deparcieux, in Nouvelle Biographie Générale 13 (Paris, 1855), 694-696.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.