المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
وظـائـف اتـجاهـات المـستهـلك
2024-11-28
كيفيّة محاسبة النّفس واستنطاقها
2024-11-28
المحاسبة
2024-11-28
الحديث الموثّق
2024-11-28
الفرعون رعمسيس الثامن
2024-11-28
رعمسيس السابع
2024-11-28


​Hamilton Cycles  
  
1474   02:19 صباحاً   date: 9-2-2016
Author : W.D. Wallis
Book or Source : Mathematics in the Real World
Page and Part : 101-102


Read More
Date: 13-3-2022 1308
Date: 8-4-2022 1592
Date: 29-4-2022 1268

Suppose a traveling salesman or tourist wants to visit the towns shown on a map.

They would wish to travel from one town to another, trying not to pass through any town twice on the trip, and usually they would wish to return to the starting point at the end of the trip. In terms of the underlying graph that represents the map, they would like to follow a cycle.

A cycle that passes through every vertex in a graph is called a Hamilton cycle and a graph with such a cycle is called Hamiltonian. The idea of such a spanning cycle was simultaneously developed by Hamilton in 1859 in a special case, and more generally by Kirkman in 1856.

A Hamilton path is a path that passes through every vertex. If you have a Hamilton cycle, you can construct a Hamilton path by deleting any one edge.

Fig. 1.1 Two sample graphs for discussing Hamilton cycles

 

Sample Problem 1.1 Consider the graph in Fig. 1.1a. Which of the following are Hamilton cycles?

(i) (a,b,e,d,c, f,a) (ii) (a,b,e,c,d,e, f,a)

(iii) (a,b,c,d,e, f,a) (iv) (a,b,c,e, f,a)

Solution. (i) and (iii) are Hamiltonian. (ii) is not; it contains a repeat of e. (iv) is not; vertex d is omitted.

At first, the problem of deciding whether a graph is Hamiltonian sounds similar to the problem of Euler circuits. However, the two problems are strikingly different in one regard. We found a very easy test for the Eulerian property, but no nice necessary and sufficient conditions are known for the existence of Hamilton cycles.

It is easy to see that the complete graphs with three or more vertices are Hamiltonian, and any ordering of the vertices gives a Hamilton cycle. We can discuss Hamiltonicity in a number of other particular cases, but there are no known theorems that characterize Hamiltonian graphs.

Suppose you want to find all Hamilton cycles in a graph with v vertices. Your first instinct might be to list all possible arrangements of v vertices and then delete those with two consecutive vertices that are not adjacent in the graph. This process can then be made more efficient by observing that the v lists a1a2 ...av−1av, a2a3 ...  ava1, ..., and ava1 ...av−2av−1 all represent the same cycle (written with a different starting point), and also avav−1 ...a2a1 is the same Hamilton cycle as a1a2 ...av−1av  (traversed in the opposite direction).

Another shortcut is available. If there is a vertex of degree 2, then any Hamilton cycle must contain the two edges touching it. If x has degree 2, and suppose its two neighbors are y and z, then xy and xz are in every Hamilton cycle. So it suffices to delete x, add an edge yz, find all Hamilton cycles in the new graph, and delete any that do not contain the edge yz. The Hamilton cycles in the original graph are then formed by inserting x between y and z.

            Fig. 1.2 Find all Hamilton cycles

 

Sample Problem 1.2 Find all Hamilton cycles in the graph F of Fig. 1.2.

Solution. The graph F has two vertices of degree 2, namely a and f . When we replace these vertices by edges bd and ce, we obtain the complete graph with vertices a,b,c,d (multiple edges can be ignored). This complete graph has three Hamilton cycles: there are six arrangements starting with b, namely bcde, bced,  bdce, bedc, bdec, becd, and the latter three are just the former three written in reverse. bcde yields a cycle that does not contain edges bd and ce. The other two give the cycles bc f eda and badc f e, so these are the two Hamilton cycles in F.

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.