المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تفريعات / القسم الثاني عشر
2025-04-06
تفريعات / القسم الحادي عشر
2025-04-06
تفريعات / القسم العاشر
2025-04-06
مساحة العمل الآمنة Safe Operating Area
2025-04-06
بداية حكم بسمتيك (1)
2025-04-06
محددات الغلق Fold-back Limiting
2025-04-06

الإلكاينات وتسميتها
2023-08-14
Ketones, RCOR
1-1-2022
Anatomy Foundations
المعيارية والدلالة(المعيارية وفكرة(الصواب والخطأ لدى نقاد الشعر))
28-4-2018
هل هناك آثار بيئية سلبية لتزايد أعداد القطط في العالم؟
4-2-2018
Imitating Master Yoda
23-12-2015


تكامل بالقانون Integration by Rule  
  
1097   11:26 صباحاً   التاريخ: 3-11-2015
المؤلف : صالح رشيد بطارسه
الكتاب أو المصدر : معجم الرياضيات
الجزء والصفحة : 89
القسم : الرياضيات / التفاضل و التكامل /


أقرأ أيضاً
التاريخ: 3-11-2015 6965
التاريخ: 10-10-2019 1618
التاريخ: 30-9-2019 2773
التاريخ: 16-5-2018 1924

القانون طريقة لتكامل الاقترانات الجبرية فقط وتظهر على الصورتين الأولى :

 حيث جـ ثابت التكامل والتكامل غير محدود .

الثانية :

 والتكامل محدود .

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.