المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر
غزوة الحديبية والهدنة بين النبي وقريش
2024-11-01
بعد الحديبية افتروا على النبي « صلى الله عليه وآله » أنه سحر
2024-11-01
المستغفرون بالاسحار
2024-11-01
المرابطة في انتظار الفرج
2024-11-01
النضوج الجنسي للماشية sexual maturity
2024-11-01
المخرجون من ديارهم في سبيل الله
2024-11-01


Vision  
  
1918   03:30 مساءاً   date: 2-11-2015
Author : Drickamer, Lee C., Stephen H. Vessey, and Elizabeth M. Jakob
Book or Source : Animal Behavior
Page and Part :


Read More
Date: 23-10-2015 1984
Date: 21-10-2015 2429
Date: 16-10-2015 2127

Vision

The eyes are the windows on the world. Vision is found widely in many dif­ferent classes of animals and may have evolved independently at different times. Vision, which involves perception of light and dark, is distinct from simple light sensitivity, such as that displayed by germinating plant sprouts that respond to the sun’s direction.

Eyecups

The complexity of eyes varies markedly in different groups of animals. Non­focusing eyecups are found in the planarians, the medusas (jellyfish) of cnidarians, some snails, and some other invertebrates. Light enters a de­pression lined with pigment-containing, light-sensitive cells. Neurons con­nected to these cells carry messages to the rest of the nervous system. Because there is no focusing system, the general direction and intensity of light can be detected, but there can be no perception of form or image.

Compound Eyes

Most adult insects and crustaceans, as well as the horseshoe crab and the extinct trilobite, have compound eyes, constructed of as few as one (in some ants) to as many as thirty thousand (in some dragonflies) individual units called ommatidia. Each ommatidium is covered with a cornea, formed from the insect exoskeleton, and has its own crystalline cone within. Both structures focus light on the retinula (light-sensitive) cells at the base. The amount of light entering the ommatidium may be controlled by increas­ing or decreasing the amount of screening pigments within. The individ­ual ommatidia do not usually cast clear images on the retinula cells, rather just a spot of color. The individual retinula cells then send this informa­tion into the brain, which puts all of the spots together to form a mental image.

Although the details of insect visual processing are unknown, there appear to be multiple levels of processing, as there are in vertebrate visual systems. Finally, insects usually have three ocelli, non-image-forming simple eyes, on the tops of their heads. These seem to awaken insects for their daily activities.

Camera Eyes

Vertebrates (including humans) and cephalopods (such as the octopus) have so-called camera eyes. Camera eyes have muscular rings called irises to con­trol the amount of light that can hit the light-sensitive cells in the back of the eye. The ability to control the amount of light is called visual adapta­tion. Human eyes have a cornea on the outer surface that provides about 70 percent of the eye’s focusing power, and they have an adjustable lens that provides the rest of the focusing power and allows accommodation, or change, of focus for near or far objects. Light entering the eye passes first through the cornea, then past the iris, through the lens, then the vitreous humor, which is a clear jellylike substance that gives the eye its shape. Light is absorbed by the retina, the layer of light-sensitive cells lining the back of the eye.

Light Transduction

Despite the differences in structure, eyes generally use the same set of bio­chemical tools to transduce light into a neural signal. A carotenoid com­pound (such as the chemical relatives of vitamin A), linked to a protein in the retinal cell membrane, captures the light energy. The light alters a chem­ical bond in the carotenoid, which then changes its shape, causing the mem­brane to alter its electrical state. The change in electrical state then will cause the retinal cell to release a chemical (called a neurotransmitter) which will excite an adjacent nerve cell. The carotenoid plus an associated protein is referred to as the visual pigment. (Interestingly, carotenes are also used by plants to help them capture the energy of the sun in photosynthesis.)

Image Processing

The visual image detected by the retina is not recorded whole and passed un­changed to the brain. Instead, the image is processed, with highlighting and integration of some features along the way. The degree of image processing varies among different types of animals. For example, toads have a “worm detector.” When the optic nerves send signals to the visual-processing area of the brains to form a linear pattern, the brain says “worm” and the toad aligns to the worm and snaps it up.

The eyes of some animals have fields of vision with little or no overlap between the two eyes, giving them a 360-degree view of the world. Such wide fields of view are seen often in prey animals, allowing higher vigilance against predators. Some ground birds, for example, have eyes that have ab­solutely no overlap. In contrast, other animals have eyes with highly over­lapping fields of vision. This allows stereoscopic vision, in which an object is viewed from two different points. Integration of these images, along with information about the relative direction in which the two eyes are pointing, allows depth perception, a critical tool for predators. It is also important for monkeys and other tree-dwelling primates, for instance, in order to know how far that next branch is so that they do not fall out of their trees!

Ultraviolet and Polarized Light

The visual spectrum of all animals goes from around 350 nanometers (ultraviolet) through all the colors most humans see to the infrared, around800 nanometers (one nanometer equals one-billionth of a meter). In the ver­tebrates, elaborate color vision is found in the primates (including humans), birds, lizards, and fish. Most other mammals lack the ability to see red or other colors (including bulls).

Insects are less well able to see the red than humans can, but they do see colors, and some insects can detect ultraviolet light. Bees can see the hidden ultraviolet color patterns of black-eyed susans and other flowers, for instance, allowing them to hone in on these flowers more easily.

Another unusual light quality that insects can detect is the plane of light polarization. Light polarization means that all of the rays arriving at the reti­nal cells are vibrating in the same plane; light typically becomes polarized when it is reflected off surfaces. Insects’ retinas are arranged so that they detect changes in polarization. This makes it possible for honeybees to de­termine the direction of the sun even on cloudy days. The sun’s direction in the sky is a critical piece of information communicated in the bee dance that a scout bee will do to communicate the location of nectar or pollen sources to other bees in the hive.

References

Drickamer, Lee C., Stephen H. Vessey, and Elizabeth M. Jakob. Animal Behavior, 5th ed. Dubuque, IA: McGraw-Hill, 1996.

Romoser, William S., and J. G. Stoffolano, Jr. The Science of Entomology, 4th ed. Boston: McGraw-Hill, 1998.

Saladin, Kenneth S. Anatomy and Physiology: The Unity of Form and Function, 2nd ed. Boston: McGraw-Hill, 2000.

 




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.