المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

محاولات المجامع اللغوية
16-4-2019
الفيتامينات Vitamins
16-9-2020
نموذج من بيع الروح وشراء الرضوان
2023-09-24
أي من الحشرات المائية تمتلك ممصات أو تقنيات لصق تساعدها على الرسو؟
10-3-2021
اصناف القاوون الشبكي المزروعة في مصر
24-9-2020
المصدر الميمي
20-10-2014

Reinher of Paderborn  
  
1363   02:00 صباحاً   date: 25-10-2015
Author : A Borst (ed.)
Book or Source : Schriften zur Komputistik im Frankenreich von 721 bis 818, in 3 Bänden
Page and Part : ...


Read More
Date: 23-10-2015 1465
Date: 25-10-2015 2096
Date: 23-10-2015 4772

Born: about 1140 in Paderborn, Roman Empire, now Germany
Died: about 1190 in Paderborn, Roman Empire, now Germany

 

Reinher of Paderborn was master and principal of the Paderborn cathedral school, and canon and dean of the Paderborn cathedral. This is supported by fifteen documents testified by him and by copies of his treatise Computus emendatus.
In 1171 Reinher published his treatise Computus emendatus, an improved calculation method for calculating the date of Easter. In the 12th century, it was obvious that the new moon in the sky appeared several days earlier than it was recorded in the calendar, represented by the church. The church followed the Easter calendar tables, developed for the years 532-626 by the abbot Dionysius Exiguus (died c. 540) on instruction by Pope John I (523-526). As Easter and the movable feasts stand in a special relation to the spring full moon, there existed a particular difficulty in calculating the date of Easter to match the solar year of about 365 days and the lunar year of about 354 days. There is no simple relation between the length of these two types of years hence they were to be calculated as exactly as possible.

Reinher was very interested in raising the prestige of the church in the field of calendrical calculations.

Qui fidem catholicam impugnant, gaudent, quod errorem inveniunt in compoto, quem tenet ecclesia. Putant enim et affirmant etiam in aliis nos errare.

(The fighters against the Catholic faith are pleased that they find an error in Computus, which the church represents. They believe and assure that we are also wrong in other respects.)

Because of his theological interest he looked at the evident error of the calendar caused by a misunderstood lunar cycle; the error in the solar cycle he had set aside. An innovation for this period was his introduction to the Jewish calendar knowledge, based on this knowledge he analyzed the mistakes of the previous calculation of the lunar year and he described in detail the steps for a correct approach. Reinher compared the lunar cycles of the Hebrews and of Dionysius Exiguus. Both assumed that 235 lunar cycles amounted to 19 years. Reinher used a lunar orbit of the Hebrews consisting of 29 days, 12 hours and 793 parts, each hour corresponds to 1080 parts. He calculated the lunar orbit of Dionysius by dividing every 19 years by 235; and he obtained 29 days, 12 hours and 174 parts, each hour corresponds to 235 parts. Consequently, in 315 years the two calculations differed by more than one day.

In the western world Reinher was the first who has used the Indian number system instead of the Roman numeral system for mathematical and astronomical work - because of the advantage of writing and arithmetic.

In designatione numerorum, figuris plerumque utimur aliis quam latinis, propter scribendi et computandi compendium.

(When naming the numbers we use mostly of the other characters than Latin because of the advantage of writing and arithmetic.)

The scientific achievements of Reinher were extremely advanced for his time. Other western sources reported the Indian numerals and the Algorismus, such as the Salzburger Computus (1143), the note-book of Hugo von Lerchenfeld or the annals of Regensburg (1174-1197), the Computus of Master Chonrad (1200, in a revision of 1396), manuscripts (late 12th century) of the monastery Prüfening and the monastery Salem (liber algorizmi), the Massa compoti of Alexandre de Villedieu (c. 1200) or the arithmetic book Liber abaci of Leonardo Fibonacci (1202). But no one before Reinher used the new number system in a scientific treatise.

Reinher did not use the Indian numerals as new typefaces for the Roman numerals, such as Gerbert of Aurillac, later Pope Sylvester II, had done with the apices. He understood the new idea of the Indian number system, and earlier than many others of his time he recognized how the use of Indian numerals simplified the arithmetic. Reinher made his calculations with our familiar decimal system. But his mathematical vocabulary was that of Boethius (480-524) and not that of Plato Tiburtinus (c. 1134), as van Wijk [1, p. 73] (he used coacervare for 'to add') and Honselmann [2, p. 123] (he used coacervare and aufferre for 'to add' and 'to subtract') claimed. Since both were not yet able to scan a text, they were unaware that Reinher had used more than once addere and subtrahere, e.g. addiderimus (lib. 2.4) and subtraxerimus (lib. 2.15).

Reinher reported (lib. 1.19) about the special planetary alignment in the night of 13 September 1170, when Mars and Jupiter for a time appeared as only one star, a conjunction in the zodiac sign of Gemini, which is proved by the tables of Schoch (1873-1929) for the 13./14.9.1170. Incidentally, the same sample year (4930) also is used by Moses Maimonides (1138-1204) in his book of recognition (Mishneh Torah).

The calendar was adapted to the solar year and to the lunar year by the Gregorian calendar reform (1582). With regard to the lunar year the mistake was that 235 synodic months by 1h28m15s were shorter than 19 Julian years. This caused an error of 1 day in 310.028329 years. How exactly the 19-year lunar cycle was calculated by Reinher, shows a comparison with the values determined by him. Reinher calculated the 19-year lunar cycle - according to the Hebrew calendar - with 6939.68962 days. According to him, the mistake of Dionysius Exiguus is 1 day in 314.683706 years.

By comparing the tables of Reinher with his own New Tables for the Reduction of Jewish Dates, Van Wijk found a deviation of 6 hours, but he said approvingly [12]:-

Under this restriction it must be said that the tables of Reinher are admirably designed and calculated with a lot of care.

The script Computus emendatus of Reinher of Paderborn is preserved in five manuscripts. They are named according to their storage locations short HANN (Niedersächsische Landesbibliothek Hannover, IV, 373, 3v-10v, 12th century), LEID (Leiden, B. der Rijksuniversiteit, BPL 191 E, 129r-140r, 12thcentury), PRAG (Praha, Státni knihovna, XIII.F.8 (2346), 105r-127, 13/14th century), VATI (Vatican City, B. Apostolica Vaticana, Vatlat. 3124, 33ra-43ra, 13/14th century), ADMO (Stiftsbibliothek Admont, Austria, Cod. 442 [HMML Pr. No. 9503] - Bl. 38ra-51va., 14th century). LEID, ADMO, PRAG have been known for some time, HANN and VATI were rediscovered by Herold [5]. The copies HANN and LEID begin with a praise for Reinher.

Incipit praefatio magistri Reinheri decani Patherbornensis, perspicacissimi calculatoris, in compotum emendatum.

(Preface of Master Reinher, dean of Paderborn, the most ingenious mathematician, for improved Computus.)

For the former esteem of the manuscripts of Reinher it is worth mentioning that the enthusiasts - of broader collections of manuscripts - apparently had an interest to have Reinher's text bound together with other valuable texts, such as Massa compoti of Alexandre de Villedieu and De anni ratione of Johannes de Sacrobosco.

In the 15th century the manuscript of Reinher is proven to have been known, although we do not know the handwriting used. At the Council of Basel 1431-1449, the treatise of Reinher was in many ways helpful. Cusanus and the Cistercian monk Hermann Zoestius of the convent of Marienfeld belonged to the calendar committee and pushed for a calendar reform. Both quoted in their tracts from the work of Reinher. Zoestius described Reinher as author, but Cusanus made Albertus Magnus the author.

... quae, cum obvient praeceptis legalibus, intentioni patrum et scandalum in fide parant, quia dicit Albertus, quod inimici fidei et de hoc gloriantur, quoniam ex illo errore nos in aliis pariformiter errare subsannant.

(... since this is contrary to the law and to the intent of the fathers, it also served as a nuisance in the faith, because Albertus says that the enemies of faith also rejoice themselves about it, because they mock on the basis of this error that we would be in the same way being wrong in other things.)

In 1951 van Wijk [12, p. 5] rediscovered up the work of Reinher:-

It not only possesses irresistible charm, which is for all time the nature of a well-planned and well written scientific treatise, rather it is the first work about calendar knowledge that uses modern figures and it is the first Western source, which gives information about the modern computus of the Jews.

Honselmann [9, p. 126] remarked that:-

... the former Cathedral School in Paderborn may be regarded as one of the most advanced of its time with respect to the mathematical teaching because no other can make it probable that there has been already calculated with Arabic numerals previously.

Incidentally, the later mathematician Karl Theodor Wilhelm Weierstrass (1815-1897) was a student of the Akademisches Gymnasium (now Theodorianum), which in its tradition goes back to the cathedral school of 799.

Borst [2, p. 83] gave the Computus emendatus of Reinher the rating:-

... of an equally moving as forgotten brilliant achievement of medieval science.


 

Books:

  1. A Borst (ed.), Schriften zur Komputistik im Frankenreich von 721 bis 818, in 3 Bänden (Hahn, Hannover, 2006), Band 1.
  2. A Borst, Computus (München, dtv 1999).
  3. M Honecker, Die Entstehung der Kalenderreformschrift des Nikolaus von Cues, Historisches Jahrbuch 60, 1940 (Köln, 1940).
  4. F S Pedersen, The Toledan Tables, A review of the manuscripts and the textual versions with an edition, Historisk-filosofiske skrifter / Det Kongelige Danske Videnskabernes Selskab (Reitzel, Copenhagen, 2002), Part 1.
  5. Reinher von Paderborn, Computus Emendatus. Die verbesserte Osterrechnung von 1171. Herausgegeben, kompiliert, übersetzt, ergänzt und mit Erläuterungen zur Computistik und zur Reinhers Werk und Person von Werner Herold , Bd. 67 der Reihe Studien und Quellen des Altertumsvereins Paderborn (2011, in Vorb.)
  6. K Schoch, Planeten-Tafeln für jedermann zur Berechnung der geozentrischen …rter der grossen Planeten (und des Mondes) für den Zeitraum von 3400 v. Chr. bis 2600 n. Chr. ohne Anwendung der Logarithmen u. trigonometrischen Funktionen bis auf ein Zehntel Grad unter besond. Berücksichtigung der Babylonischen Astronomie / aufgest. von Karl Schoch; XLV Sp., 15 S. (Linser, Berlin, 1927).
  7. L Thorndike and P Kibre, A catalogue of incipits of mediaeval scientific writings in Latin - Rev. and augm. ed. (Medieval Acad. of America, Cambridge, Mass., 1963).

Articles:

  1. M Hanneken, Die ständische Zusammensetzung des Paderborner Domkapitels im Mittelalter, Westfälische Zeitschrift, 90. Band, II. Abt., Münster (Regensberg, Münster, 1934), 70-170.
  2. K Honselmann, Magister Reinher, Schrittmacher für die Kalenderreform und die moderne Rechenkunst, in: Ders. (ed.), Studien und Quellen zur westfälischen Geschichte 3. Von der Domschule zum Gymnasium Theodorianum in Paderborn (Paderborn, 1962), 107-126.
  3. F Kaltenbrunner, Die Vorgeschichte der Gregorianischen Kalenderreform, Sitzungsberichte d. Kais. Akad. d. Wiss. d. phil.-hist. Cl., 82. Band, Jg. 1876. Heft III (Wien, 1876), 289-365.
  4. J Obermann (ed.), Sanctification of the New Moon, The Code of Maimonides (Mishneh Torah), Book Three, Treatise Eight (Translates From the Hebrew By Solomon Gandz And An Astronomical Commentary By Otto Neugebauer) (Yale Univ. Press, New Haven, 1956), 38-40.
  5. W E Van Wijk, Le comput émendé de Reinherus de Paderborn (1171), (Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, AFD. Letterkunde, Nieuwe Reeks Deel LVII, NO. 3) (Amsterdam, 1951).
  6. E Zinner, zu: George Sarton, Introduction to the History of Science, Deutsche Literaturzeitung, Dritte Folge, 4. Jahrgang, Juli-Dezember, Sp. (Quelle & Meyer, Leipzig, 1933), 1287-1292.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.