Read More
Date: 4-3-2021
![]()
Date: 19-4-2021
![]()
Date: 6-4-2021
![]() |
A moment of a univariate probability density function
taken about the mean
,
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
where denotes the expectation value. The central moments
can be expressed as terms of the raw moments
(i.e., those taken about zero) using the binomial transform
![]() |
(3) |
with (Papoulis 1984, p. 146). The first few central moments expressed in terms of the raw moments are therefore
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
These transformations can be obtained using CentralToRaw[n] in the Mathematica application package mathStatica.
The central moments can also be expressed in terms of the cumulants
, with the first few cases given by
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
These transformations can be obtained using CentralToCumulant[n] in the Mathematica application package mathStatica.
The central moment of a multivariate probability density function can be similarly defined as
![]() |
(13) |
Therefore,
![]() |
(14) |
For example,
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
Similarly, the multivariate central moments can be expressed in terms of the multivariate cumulants. For example,
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
These transformations can be obtained using CentralToRaw[m, n, ...
] in the Mathematica application package mathStatica and CentralToCumulant[
m, n, ...
], respectively.
REFERENCES:
Kendall, M. G. "The Derivation of Multivariate Sampling Formulae from Univariate Formulae by Symbolic Operation." Ann. Eugenics 10, 392-402, 1940.
Kenney, J. F. and Keeping, E. S. "Moments About the Mean." §7.3 in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, pp. 92-93, 1962.
Papoulis, A. Probability, Random Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, p. 146, 1984.
Smith, P. J. "A Recursive Formulation of the Old Problem of Obtaining Moments from Cumulants and Vice Versa." Amer. Stat. 49, 217-218, 1995
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|