المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

INTRODUCTION TO PROBABILITY IN FINITE SAMPLE SPACES-Introduction
1-1-2017
العلاقة بين الجغرافية السياسية والجيوبوليتك
7-5-2022
Noun incorporation
24-1-2022
الحضارة وسبب قيامها
7-1-2021
منهج التاريخ
10-9-2016
نصر بن يوسف
13-08-2015

Prime Partition  
  
1693   03:32 مساءً   date: 11-10-2020
Author : Chawla, L. M. and Shad, S. A.
Book or Source : "On a Trio-Set of Partition Functions and Their Tables." J. Natural Sciences and Mathematics 9
Page and Part : ...


Read More
Date: 16-8-2020 599
Date: 2-1-2020 1036
Date: 1-12-2019 665

Prime Partition

A prime partition of a positive integer n>=2 is a set of primes p_i which sum to n. For example, there are three prime partitions of 7 since

 7=7=2+5=2+2+3.

The number of prime partitions of n=2, 3, ... are 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, ... (OEIS A000607). If a_n=1 for n prime and a_n=0 for n composite, then the Euler transform b_n gives the number of partitions of n into prime parts (Sloane and Plouffe 1995, p. 21).

The minimum number of primes needed to sum to n=2, 3, ... are 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, ... (OEIS A051034). The maximum number of primes needed to sum to n is just |_n/2_|, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, ... (OEIS A004526), corresponding to a representation in terms of all 2s for an even number or one 3 and the rest 2s for an odd number.

The numbers which can be represented by a single prime are obviously the primes themselves. Composite numbers which can be represented as the sum of two primes are 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, ... (OEIS A051035), and composite numbers which are not the sum of fewer than three primes are 27, 35, 51, 57, 65, 77, 87, 93, 95, 117, 119, ..., (OEIS A025583). The conjecture that no numbers require four or more primes is called the Goldbach conjecture.


REFERENCES:

Berndt, B. C. and Wilson, B. M. "Chapter 5 of Ramanujan's Second Notebook." In Analytic Number Theory: Proceedings of the Conference Held at Temple University, Philadelphia, Pa., May 12-15, 1980 (Ed. M. I. Knopp). Berlin: Springer-Verlag, pp. 49-78, 1981.

Chawla, L. M. and Shad, S. A. "On a Trio-Set of Partition Functions and Their Tables." J. Natural Sciences and Mathematics 9, 87-96, 1969.

Gupta, O. P. and Luthra, S. "Partitions into Primes." Proc. Nat. Inst. Sci. India. Part A 21, 181-184, 1955.

Gupta, H. "Partitions into Distinct Primes." Proc. Nat. Inst. Sci. India. Part A 21, 185-187, 1955.

Guy, R. K. "The Strong Law of Small Numbers." Amer. Math. Monthly 95, 697-712, 1988.

Sloane, N. J. A. Sequences A000607/M0265, A004526, A025583, A051034, and A051035 in "The On-Line Encyclopedia of Integer Sequences."

Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, 1995.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.