Read More
Date: 10-1-2020
974
Date: 12-7-2020
1327
Date: 18-12-2019
731
|
A generalization of Fermat's last theorem which states that if , where , , , , , and are any positive integers with , then , , and have a common factor. The conjecture was announced in Mauldin (1997), and a cash prize of has been offered for its proof or a counterexample (Castelvecchi 2013).
This conjecture is more properly known as the Tijdeman-Zagier conjecture (Elkies 2007).
REFERENCES:
Brun, V. "Über hypothesesenbildungen." Arc. Math. Naturvidenskab 34, 1-14, 1914.
Castelvecchi, D. "Mathematics Prize Ups the Ante to $1 Million." June 4, 2013. https://blogs.nature.com/news/2013/06/mathematics-prize-ups-the-ante-to-1-million.html.
Darmon, H. and Granville, A. "On the Equations and ." Bull. London Math. Soc. 27, 513-543, 1995.
Elkies, N. "The ABCs of Number Theory." Harvard Math. Rev. 1, 64-76, 2007.
Mauldin, R. D. "A Generalization of Fermat's Last Theorem: The Beal Conjecture and Prize Problem." Not. Amer. Math. Soc. 44, 1436-1437, 1997.
Mauldin, R. D. "The Beal Conjecture and Prize." https://www.math.unt.edu/~mauldin/beal.html.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|