المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

اهم الدول المنتجة للتين الشوكي
8-10-2019
بدايات الثورة الصناعيّة
30-6-2018
تعريف شهادة الشهود
2024-11-09
احرف الشرط
20-10-2014
تحضير الالكانات الحلقية
2023-08-12
المضخات الكهرطيسية وتسارع البلازما
4-6-2017

Prime Gaps  
  
1303   04:10 مساءً   date: 8-9-2020
Author : American Institute of Mathematics.
Book or Source : "Small Gaps between Consecutive Primes: Recent Work of D. Goldston and C. Yildirim." https://www.aimath.org/goldston_tech/.
Page and Part : ...


Read More
Date: 14-4-2020 744
Date: 5-1-2020 774
Date: 24-7-2020 511

Prime Gaps

A prime gap of length n is a run of n-1 consecutive composite numbers between two successive primes. Therefore, the difference between two successive primes p_k and p_(k+1) bounding a prime gap of length n is p_(k+1)-p_k=n, where p_k is the kth prime number. Since the prime difference function

 d_k=p_(k+1)-p_k

(1)

is always even (except for p_1=2), all primes gaps >1 are also even. The notation p(n) is commonly used to denote the smallest prime p_k corresponding to the start of a prime gap of length n, i.e., such that p(n)=p_k is prime, p(n)+1p(n)+2, ..., p(n)+n-1 are all composite, and p_(k+1)=p(n)+n is prime (with the additional constraint that no smaller number satisfying these properties exists).

The maximal prime gap G(N) is the length of the largest prime gap that begins with a prime p_k less than some maximum value N. For n=1, 2, ..., G(10^n) is given by 4, 8, 20, 36, 72, 114, 154, 220, 282, 354, 464, 540, 674, 804, 906, 1132, ... (OEIS A053303).

Arbitrarily large prime gaps exist. For example, for any n>1, the numbers n!+2n!+3, ..., n!+n are all composite (Havil 2003, p. 170). However, no general method more sophisticated than an exhaustive search is known for the determination of first occurrences and maximal prime gaps (Nicely 1999).

PrimeGaps

Cramér (1937) and Shanks (1964) conjectured that

 p(n)∼exp(sqrt(n)).

(2)

Wolf conjectures a slightly different form

 p(n)∼sqrt(n)exp(sqrt(n)),

(3)

which agrees better with numerical evidence.

Wolf conjectures that the maximal gap G(n) between two consecutive primes less than n appears approximately at

 G(n)∼n/(pi(n))[2lnpi(n)-lnn+ln(2C_2)]=g(n),

(4)

where pi(n) is the prime counting function and C_2 is the twin primes constant. Setting pi(n)∼n/lnn reduces to Cramer's conjecture for large n,

 G(n)∼(lnn)^2.

(5)

It is known that there is a prime gap of length 803 following 90874329411493, and a prime gap of length 4247 following 10^(314)-1929 (Baugh and O'Hara 1992). H. Dubner (2001) discovered a prime gap of length 119738 between two 3396-digit probable primes. On Jan. 15, 2004, J. K. Andersen and H. Rosenthal found a prime gap of length 1001548 between two probabilistic primes of 43429 digits each. In January-May 2004, Hans Rosenthal and Jens Kruse Andersen found a prime gap of length 2254930 between two probabilistic primes with 86853 digits each (Anderson 2004).

The merit of a prime gap compares the size of a gap to the local average gap, and is given by (p_(n+1)-p_n)/(lnp_n). In 1999, the number 1693182318746371 was found, with merit 32.2825. This remained the record merit until 804212830686677669 was found in 2005, with a gap of 1442 and a merit of 34.9757. Andersen maintains a list of the top 20 known merits. The prime gaps of increasing merit are 2, 3, 7, 113, 1129, 1327, 19609, ... (OEIS A111870).

Young and Potler (1989) determined the first occurrences of prime gaps up to 72635119999997, with all first occurrences found between 1 and 673. Nicely (1999) has extended the list of maximal prime gaps. The following table gives the values of p(n) for small n, omitting degenerate runs which are part of a run with greater n (OEIS A005250 and A002386).

n p(n) n p(n)
1 2 354 4302407359
2 3 382 10726904659
4 7 384 20678048297
6 23 394 22367084959
8 89 456 25056082087
14 113 464 42652618343
18 523 468 127976334671
20 887 474 182226896239
22 1129 486 241160624143
34 1327 490 297501075799
36 9551 500 303371455241
44 15683 514 304599508537
52 19609 516 416608695821
72 31397 532 461690510011
86 155921 534 614487453523
96 360653 540 738832927927
112 370261 582 1346294310749
114 492113 588 1408695493609
118 1349533 602 1968188556461
132 1357201 652 2614941710599
148 2010733 674 7177162611713
154 4652353 716 13829048559701
180 17051707 766 19581334192423
210 20831323 778 42842283925351
220 47326693 804 90874329411493
222 122164747 806 171231342420521
234 189695659 906 218209405436543
248 191912783 916 1189459969825483
250 387096133 924 1686994940955803
282 436273009 1132 1693182318746371
288 1294268491 1184 43841547845541059
292 1453168141 1198 55350776431903243
320 2300942549 1220 80873624627234849
336 3842610773    

Define

 Delta=lim inf_(n)(p_(n+1)-p_n)/(lnp_n)

(6)

as the infimum limit of the ratio of the nth prime difference to the natural logarithm of the nth prime number. If there are an infinite number of twin primes, then Delta=0. This follows since it must then be true that d_n=2 infinitely often, say at n=n(k) for k=1, 2, ..., so a necessary condition for the twin prime conjecture to hold is that

Delta = lim inf_(n->infty)(d_n)/(lnp_n)

(7)

<= lim inf_(k->infty)(d_(n(k)))/(lnp_(n(k)))

(8)

= lim_(k->infty)2/(lnp_(n(k)))

(9)

= 0.

(10)

However, this condition is not sufficient, since the same proof works if 2 is replaced by any constant.

Hardy and Littlewood showed in 1926 that, subject to the truth of the generalized Riemann hypothesis, Delta<=2/3. This was subsequently improved by Rankin (again assuming the generalized Riemann hypothesis) to Delta<=3/5. In 1940, Erdős used sieve theory to show for the first time with no assumptions that Delta<1. This was subsequently improved to 15/16 (Ricci), (2+sqrt(3))/8=0.46650... (Bombieri and Davenport 1966), and (2sqrt(2)-1)/4=0.45706... (Pil'Tai 1972), as quoted in Le Lionnais (1983, p. 26). Huxley (1973, 1977) obtained 1/4+pi/16=0.44634..., which was improved by Maier in 1986 to Delta<=0.2486, which was the best result known until 2003 (American Institute of Mathematics).

At a March 2003 meeting on elementary and analytic number theory in Oberwolfach, Germany, Goldston and Yildirim presented an attempted proof that Delta=0. While the original proof turned out to be flawed (Mackenzie 2003ab), the result has now been established by a new proof (American Institute of Mathematics 2005, Cipra 2005, Devlin 2005, Goldston et al. 2005ab).


REFERENCES:

American Institute of Mathematics. "Small Gaps between Consecutive Primes: Recent Work of D. Goldston and C. Yildirim." https://www.aimath.org/goldston_tech/.

American Institute of Mathematics. "Breakthrough in Prime Number Theory." May 24, 2005. https://aimath.org/.

Andersen, J. K. "First Known Prime Megagap." https://hjem.get2net.dk/jka/math/primegaps/megagap.htm.

Andersen, J. K. "Largest Known Prime Gap." https://hjem.get2net.dk/jka/math/primegaps/megagap2.htm.

Andersen, J. K. "A Prime Gap of 1001548." 15 Jan 2004. https://listserv.nodak.edu/scripts/wa.exe?A2=ind0401&L=nmbrthry&F=&S=&P=397.

Andersen, J. K. "A Prime Gap of 2254930." 2 Jun 2004. https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0406&L=nmbrthry&P=601.

Andersen, J. K. "Top-20 Prime Gaps." https://hjem.get2net.dk/jka/math/primegaps/gaps20.htm.

Baugh, D. and O'Hara, F. "Large Prime Gaps." J. Recr. Math. 24, 186-187, 1992.

Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, pp. 133-134, 1994.

Bombieri, E. and Davenport, H. "Small Differences between Prime Numbers." Proc. Roy. Soc. A 293, 1-18, 1966.

Brent, R. P. "The First Occurrence of Large Gaps between Successive Primes." Math. Comput. 27, 959-963, 1973.

Brent, R. P. "The Distribution of Small Gaps between Successive Primes." Math. Comput. 28, 315-324, 1974.

Brent, R. P. "The First Occurrence of Certain Large Prime Gaps." Math. Comput. 35, 1435-1436, 1980.

Caldwell, C. "The Gaps Between Primes." https://primes.utm.edu/notes/gaps.html.

Cipra, B. "Proof Promises Progress in Prime Progressions." Science 304, 1095, 2004.

Cipra, B. "Third Time Proves Charm for Prime-Gap Theorem." Science 308, 1238, 2005.

Cramér, H. "On the Order of Magnitude of the Difference between Consecutive Prime Numbers." Acta Arith. 2, 23-46, 1937.

Cutter, P. A. "Finding Prime Pairs with Particular Gaps." Math. Comput. 70, 1737-1744, 2001.

Devlin, K. "Major Advance on the Twin Primes Conjecture." May 24, 2005. https://www.maa.org/news/052505twinprimes.html.

Dubner, H. "New Large Prime Gap Record." 13 Dec 2001. https://listserv.nodak.edu/scripts/wa.exe?A2=ind0112&L=nmbrthry&P=1093.

Fouvry, É. "Autour du théorème de Bombieri-Vinogradov." Acta. Math. 152, 219-244, 1984.

Fouvry, É. and Grupp, F. "On the Switching Principle in Sieve Theory." J. reine angew. Math. 370, 101-126, 1986.

Fouvry, É. and Iwaniec, H. "Primes in Arithmetic Progression." Acta Arith. 42, 197-218, 1983.

Goldston, D. A.; Graham, S. W.; Pintz, J.; and Yildirim, C. Y. "Small Gaps between Primes or Almost Primes." Jun. 3, 2005a. https://www.arxiv.org/abs/math.NT/0506067/.

Goldston, D. A.; Motohashi, Y.; Pintz, J.; and Yildirim, C. Y. "Small Gaps between Primes Exist." May 14, 2005b. https://www.arxiv.org/abs/math.NT/0505300/.

Guy, R. K. "Gaps between Primes. Twin Primes" and "Increasing and Decreasing Gaps." §A8 and A11 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 19-23 and 26-27, 1994.

Havil, J. Gamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, 2003.

Huxley, M. N. "Small Differences between Consecutive Primes." Mathematica 20, 229-232, 1973.

Huxley, M. N. "Small Differences between Consecutive Primes. II." Mathematica 24, 142-152, 1977.

Lander, L. J. and Parkin, T. R. "On First Appearance of Prime Differences." Math. Comput. 21, 483-488, 1967.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 1983.

Mackenzie, D. "Prime Proof Helps Mathematicians Mind the Gaps." Science 300, 32, 2003a.

Mackenzie, D. "Prime-Number Proof's Leap Falls Short." Science 300, 1066, 2003b.

Montgomery, H. "Small Gaps Between Primes." 13 Mar 2003. https://listserv.nodak.edu/scripts/wa.exe?A2=ind0303&L=nmbrthry&P=1323.

Nicely, T. R. "First Occurrence Prime Gaps." https://www.trnicely.net/gaps/gaplist.html.

Nicely, T. R. "New Maximal Prime Gaps and First Occurrences." Math. Comput. 68, 1311-1315, 1999. https://www.trnicely.net/gaps/gaps.html.

Nicely, T. R. and Nyman, B. "First Occurrence of a Prime Gap of 1000 or Greater." https://www.trnicely.net/gaps/gaps2.html.

Nyman, B. and Nicely, T. R. "New Prime Gaps Between 10^(15) and 5×10^(16)." J. Int. Seq. 6, 1-6, 2003.

Rivera, C. "Problems & Puzzles: Puzzle 011-Distinct, Increasing & Decreasing Gaps." https://www.primepuzzles.net/puzzles/puzz_011.htm.

Shanks, D. "On Maximal Gaps between Successive Primes." Math. Comput. 18, 646-651, 1964.

Sloane, N. J. A. Sequences A002386/M0858, A008996, A008950, A008995, A008996, A030296, A053303, and A111870 in "The On-Line Encyclopedia of Integer Sequences."

Soundararajan, K. "Small Gaps Between Prime Numbers: The Work of Goldston-Pintz-Yildirim." Bull. Amer. Math. Soc. 44, 1-18, 2007.

Wolf, M. "First Occurrence of a Given Gap between Consecutive Primes." https://www.ift.uni.wroc.pl/~mwolf/.

Wolf, M. "Some Conjectures on the Gaps Between Consecutive Primes." https://www.ift.uni.wroc.pl/~mwolf/.

Young, J. and Potler, A. "First Occurrence Prime Gaps." Math. Comput. 52, 221-224, 1989.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.