Read More
Date: 10-10-2019
![]()
Date: 19-9-2018
![]()
Date: 30-3-2019
![]() |
Polynomials which form a Sheffer sequence with
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
and have generating function
![]() |
(3) |
The first few are
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
Jordan (1965) considers the related polynomials which form a Sheffer sequence with
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
These polynomials have generating function
![]() |
(9) |
The first few are
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
The Peters polynomials are a generalization of the Boole polynomials.
REFERENCES:
Boas, R. P. and Buck, R. C. Polynomial Expansions of Analytic Functions, 2nd print., corr. New York: Academic Press, p. 37, 1964.
Jordan, C. Calculus of Finite Differences, 3rd ed. New York: Chelsea, 1965.
Roman, S. The Umbral Calculus. New York: Academic Press, 1984.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
بالصور: ممثل المرجعية العليا والامين العام للعتبة الحسينية يستقبلون المهنئين القاصدين مرقد الامام الحسين (ع) في عيد الفطر المبارك
|
|
|