Read More
Date: 15-6-2019
![]()
Date: 27-8-2019
![]()
Date: 22-7-2019
![]() |
The inverse tangent integral is defined in terms of the dilogarithm
by
![]() |
(1) |
(Lewin 1958, p. 33). It has the series
![]() |
(2) |
and gives in closed form the sum
![]() |
(3) |
that was considered by Ramanujan (Lewin 1958, p. 39). The inverse tangent integral can be expressed in terms of the dilogarithm as
![]() |
(4) |
in terms of Legendre's chi-function as
![]() |
(5) |
in terms of the Lerch transcendent by
![]() |
(6) |
and as the integral
![]() |
(7) |
has derivative
![]() |
(8) |
It satisfies the identities
![]() |
(9) |
where
![]() |
(10) |
is the generalized inverse tangent function.
has the special value
![]() |
(11) |
where is Catalan's constant, and the functional relationships
![]() |
(12) |
the two equivalent identities
![]() |
(13) |
![]() |
(14) |
and
![]() |
(15) |
(Lewin 1958, p. 39). The triplication formula is given by
![]() |
(16) |
which leads to
![]() |
(17) |
and the algebraic form
![]() |
(18) |
(Lewin 1958, p. 41).
REFERENCES:
Finch, S. R. "Inverse Tangent Integral." §1.7.6 in Mathematical Constants. Cambridge, England: Cambridge University Press, p. 57, 2003.
Lewin, L. "The Inverse Tangent Integral" and "The Generalized Inverse Tangent Integral." Chs. 2-3 in Dilogarithms and Associated Functions. London: Macdonald, pp. 33-90, 1958.
Lewin, L. Polylogarithms and Associated Functions. Amsterdam, Netherlands: North-Holland, p. 45, 1981.
Nielsen, N. "Der Eulersche Dilogarithmus und seine Verallgemeinerungen." Nova Acta Leopoldina, Abh.der Kaiserlich Leopoldinisch-Carolinischen Deutschen Akad. der Naturforsch. 90, 121-212, 1909.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
العتبة العباسية المقدسة تقدم دعوة إلى كلية مزايا الجامعة للمشاركة في حفل التخرج المركزي الخامس
|
|
|