Read More
Date: 7-8-2019
1861
Date: 16-8-2018
1692
Date: 16-8-2019
962
|
An approximation for the gamma function with is given by
(1) |
where is an arbitrary constant such that ,
(2) |
where is a Pochhammer symbol and
(3) |
and
(4) |
|||
(5) |
with (Lanczos 1964; Luke 1969, p. 30). satisfies
(6) |
and if is a positive integer, then satisfies the identity
(7) |
(Luke 1969, p. 30).
A similar result is given by
(8) |
|||
(9) |
|||
(10) |
where is a Pochhammer symbol, is a factorial, and
(11) |
The first few values of are
(12) |
|||
(13) |
|||
(14) |
|||
(15) |
|||
(16) |
(OEIS A054379 and A054380; Whittaker and Watson 1990, p. 253). Note that Whittaker and Watson incorrectly give as 227/60.
Yet another related result gives
(17) |
(Whittaker and Watson 1990, p. 261), where is a Hurwitz zeta function and is a polygamma function.
REFERENCES:
Lanczos, C. J. Soc. Indust. Appl. Math. Ser. B: Numer. Anal. 1, 86-96, 1964.
Luke, Y. L. "An Expansion for ." §2.10.3 in The Special Functions and their Approximations, Vol. 1. New York: Academic Press, pp. 29-31, 1969.
Sloane, N. J. A. Sequences A054379 and A054379 in "The On-Line Encyclopedia of Integer Sequences."
Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
المجمع العلمي للقرآن الكريم يقيم جلسة حوارية لطلبة جامعة الكوفة
|
|
|