Read More
Date: 25-3-2019
![]()
Date: 27-8-2019
![]()
Date: 14-8-2019
![]() |
The quasiperiodic function defined by
![]() |
(1) |
where is the Weierstrass zeta function and
![]() |
(2) |
(As in the case of other Weierstrass elliptic functions, the invariants and
are frequently suppressed for compactness.) Then
![]() |
(3) |
where the term with is omitted from the product and
.
Amazingly, , where
is the Weierstrass sigma function with half-periods
and
, has a closed form in terms of
,
, and
. This constant is known as the Weierstrass constant.
In addition, satisfies
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
and
![]() |
(6) |
for , 2, 3. The function is implemented in the Wolfram Language as WeierstrassSigma[u,
g2, g3
].
can be expressed in terms of Jacobi theta functions using the expression
![]() |
(7) |
where , and
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
There is a beautiful series expansion for , given by the double series
![]() |
(10) |
where ,
for either subscript negative, and other values are gives by the recurrence relation
![]() |
(11) |
(Abramowitz and Stegun 1972, pp. 635-636). The following table gives the values of the coefficients for small
and
.
![]() |
![]() |
![]() |
![]() |
|
![]() |
1 | -3 | -54 | 14904 |
![]() |
-1 | -18 | 4968 | 502200 |
![]() |
-9 | 513 | 257580 | 162100440 |
![]() |
69 | 33588 | 20019960 | -9465715080 |
![]() |
321 | 2808945 | -376375410 | -4582619446320 |
![]() |
160839 | -41843142 | -210469286736 | -1028311276281264 |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Weierstrass Elliptic and Related Functions." Ch. 18 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 627-671, 1972.
Brezhnev, Y. V. "Uniformisation: On the Burnside Curve ." 9 Dec 2001. http://arxiv.org/abs/math.CA/0111150.
Knopp, K. "Example: Weierstrass's -Function." §2d in Theory of Functions Parts I and II, Two Volumes Bound as One, Part II.New York: Dover, pp. 27-30, 1996.
Tölke, F. "Spezielle Weierstraßsche Sigma-Funktionen." Ch. 9 in Praktische Funktionenlehre, dritter Band: Jacobische elliptische Funktionen, Legendresche elliptische Normalintegrale und spezielle Weierstraßsche Zeta- und Sigma Funktionen. Berlin: Springer-Verlag, pp. 164-180, 1967.
Whittaker, E. T. and Watson, G. N. "The Function ." §20.42 in A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, pp. 447-448, 450-452, and 458-461, 1990.
|
|
4 أسباب تجعلك تضيف الزنجبيل إلى طعامك.. تعرف عليها
|
|
|
|
|
أكبر محطة للطاقة الكهرومائية في بريطانيا تستعد للانطلاق
|
|
|
|
|
العتبة العباسية المقدسة تبحث مع العتبة الحسينية المقدسة التنسيق المشترك لإقامة حفل تخرج طلبة الجامعات
|
|
|