Read More
Date: 12-9-2019
1184
Date: 29-9-2018
3120
Date: 24-3-2019
1759
|
The function is defined as the imaginary part of
(1) |
where is a modified Bessel function of the second kind. Therefore,
(2) |
where is the imaginary part.
It is implemented as KelvinKei[nu, z].
has a complicated series given by Abramowitz and Stegun (1972, p. 380).
The special case is commonly denoted and has the plot shown above.
has the series expansion
(3) |
where is the digamma function (Abramowitz and Stegun 1972, p. 380).
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Kelvin Functions." §9.9 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 379-381, 1972.
Prudnikov, A. P.; Marichev, O. I.; and Brychkov, Yu. A. "The Kelvin Functions , , and ." §1.7 in Integrals and Series, Vol. 3: More Special Functions. Newark, NJ: Gordon and Breach, pp. 29-30, 1990.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
المجمع العلمي يصدرُ مجموعةَ أبحاثٍ علميَّةٍ محكَّمةٍ في مجلَّة الذِّكرِ
|
|
|